A Survey on Intelligent Wheelchair Prototypes and Simulators

  • Brígida Mónica Faria
  • Luís Paulo Reis
  • Nuno Lau
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 275)

Abstract

Nowadays more than 700 million persons around the world have some kind of disability or handicap. During the last decades the elderly population in most of the European countries and across all the most civilized countries is also growing at an increasing pace. This phenomenon is receiving increasing attention from the scientific community, during the last years, and several solutions are being proposed in order to allow a more independent life to the people belonging to those groups. In this context Intelligent Wheelchairs (IW) are instruments that are a natural development of the scientific work that has been conducted to improve the traditional Wheelchair characteristics using health informatics, assistive robotics and human computer interface technologies. Some of the most important features of the IW are their navigation capabilities and automatic adaptation of their interface to the user. This paper presents the evolution and state of art concerning IWs prototypes and simulators and intelligent human-computer interfaces in the context of this devices. Our study enabled us to conclude that although several Intelligent Wheelchair prototypes are being developed in a large number of research projects, around the world, the adaptation of their user interface to the patient is an often neglected research topic. Thus, projects aiming at developing new concepts of Intelligent Wheelchairs are needed mainly using multimodal interfaces and wheelchair interfaces adapted to the user characteristics.

Keywords

Health Informatics Human-Computer Interfaces Simulation Intelligent Wheelchairs Wheelchair’s Simulators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Byrnes, A., Conte, A., Gonnot, J.-P., Larsson, L., Schindlmayr, T., Shepherd, N., Walker, S., Zarraluqui, A.: Disabilities: From Exclusion to Equality. United Nations - Office of the High Commissioner for Human Rights, Geneve (2007)Google Scholar
  2. 2.
    U. Nations: Report of the Second World Assembly on Ageing, Madrid (2002)Google Scholar
  3. 3.
    A. INE: O Envelhecimento em Portugal - Situação demográfica e sócio-económica recente das pessoas idosas, II Assemb. Mundial Envelhecimento, Madrid (2002) Google Scholar
  4. 4.
    Reis, L.P., Braga, R.A.M., Sousa, M., Moreira, A.P.: IntellWheels MMI: A Flexible Interface for an Intelligent Wheelchair. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS, vol. 5949, pp. 296–307. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    UN: Mainstreaming Disability in MDG Policies, Processes and Mechanisms: Development for All. World Health Organization, Geneva, Switzerland (2009) Google Scholar
  6. 6.
    Woods, B., Watson, N.: The social and technological history of wheelchairs. Int. Journal of Therapy and Rehabilitation 11(9), 407–410 (2004)Google Scholar
  7. 7.
    Simpson, R.: Smart wheelchairs: A literature review. Journal of Rehabilitation Resarch & Development, 423–435 (July/August 2005)Google Scholar
  8. 8.
    Simpson, R., LoPresti, E., Hayashi, S., Nourbakhsh, I., Miller, D.: The Smart Wheelchair Component System. J. Rehab. Research & Development 41(3B), 429–442 (2004)CrossRefGoogle Scholar
  9. 9.
    Braga, R.A.M., Petry, M., Moreira, A.P., Reis, L.P.: Concept and Design of the Intellwheels Platform for Developing Intelligent Wheelchairs. In: Cetto, J.A., Ferrier, J.-L., Filipe, J. (eds.) Informatics in Control, Automation and Robotics. LNEE, vol. 37, pp. 191–203. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Jia, P., Hu, H., Lu, T., Yuan, K.: Head Gesture Recognition for Hands-free Control of an Intelligent Wheelchair. J. of Industrial Robot 34(1), 60–68 (2007)CrossRefGoogle Scholar
  11. 11.
    Madarasz, R.L., Heiny, L.C., Cromp, R.F., Mazur, N.M.: The design of an autonomous vehicle for the disabled. IEEE J. Robotics and Automation 2(3), 117–126 (1986)CrossRefGoogle Scholar
  12. 12.
    Mandel, C., Rofer, T., Lohmuller, I.: On the Clinical Evaluation of Smart Driving Assistance for Power Wheelchairs. In: IROS 2012 W. Progress, Challenges and Future Perspectives in Navigation and Manipulation Assistance for Robotic Wheelchairs, Vilamoura (2012)Google Scholar
  13. 13.
    Hoyer, H., Hölper, R.: Open control architecture for an intelligent omnidirectional wheelchair. In: Proc. 1st TIDE Congress, Brussels (1993)Google Scholar
  14. 14.
    Simpson, R.C., Levine, S.P., Bell, D.A., Jaros, L.A., Koren, Y., Borenstein, J.: NavChair: An Assistive Wheelchair Navigation System with Automatic Adaptation. In: Mittal, V.O., Yanco, H.A., Aronis, J., Simpson, R.C. (eds.) Assistive Technology and AI. LNCS (LNAI), vol. 1458, pp. 235–255. Springer, Heidelberg (1998)Google Scholar
  15. 15.
    Bell, D.A., Borenstein, J., Levine, S.P., Koren, Y., Jaros, L.: An assistive navigation system for wheelchairs based upon mobile robot obstacle avoidance. In: IEEE Conf. on Robotics and Automation (1994)Google Scholar
  16. 16.
    Levine, S.P., Bell, D.A., Jaros, L.A., Simpson, R., Koren, Y.: The NavChair assistive wheelchair navigation system. IEEE Trans. Rehabilitation Engineering (1999)Google Scholar
  17. 17.
    Miller, D., Slack, M.: Design and testing of a low-cost robotic wheelchair. In: Autonomous Robots (1995)Google Scholar
  18. 18.
    Miller, D.P.: Assistive Robotics: An Overview. In: Mittal, V.O., Yanco, H.A., Aronis, J., Simpson, R.C. (eds.) Assistive Technology and AI. LNCS (LNAI), vol. 1458, pp. 126–136. Springer, Heidelberg (1998)Google Scholar
  19. 19.
    Wellman, P., Krovi, V., Kumar, V.: An adaptive mobility system for the disabled. In: Proc. IEEE Int. Conf. on Robotics and Automation (1994)Google Scholar
  20. 20.
    Borgerding, B., Ivlev, O., Martens, C., Ruchel, N., Gräser, A.: FRIEND: Functional robot arm with user friendly interface for disabled people. In: 5th European Conf. for the Advancement of Assistive Technology (1999)Google Scholar
  21. 21.
    Volosyak, I., Ivlev, O., Graser, A.: Rehabilitation robot FRIEND II - the general concept and current implementation. In: 9th Int. Conf. on Rehabilitation Robotics, ICORR 2005, Chicago (2005)Google Scholar
  22. 22.
    Ng, P.C., De Silva, L.C.: Head gestures recognition. In: Proceedings of the Int. Conf. on Image Processing (2001)Google Scholar
  23. 23.
    Adachi, Y., Kuno, Y., Shimada, N., Shirai, Y.: Intelligent wheelchair using visual information on human faces. In: Int. Conf. in Intelligent Robots and Systems (1998)Google Scholar
  24. 24.
    Pruski, A., Ennaji, M., Morere, Y.: VAHM: A user adapted intelligent wheelchair. In: 2002 IEEE Int. Conf. on Control Applications, Glasgow (2002)Google Scholar
  25. 25.
    Satoh, Y., Sakaue, K.: An Omnidirectional Stereo Vision-Based Smart Wheelchair. EURASIP Journal on Image and Video, 11 (2007)Google Scholar
  26. 26.
    Gao, C., Hoffman, I., Miller, T., Panzarella, T., Spletzer, J.: Performance Characterization of LIDAR Based Localization for Docking a Smart Wheelchair System. In: Int. Conference on Intelligent Robots and Systems, San Diego (2008)Google Scholar
  27. 27.
    Horn, O., Kreutner, M.: Smart wheelchair perception using odometry, ultrasound sensors and camera. Robotica 27(2), 303–310 (2009)CrossRefGoogle Scholar
  28. 28.
    RADHAR: RADHAR - Robotic ADaptation to Humans Adapting to Robots, Kat. Univ. Leuven., https://www.radhar.eu/about (accessed October 2012)
  29. 29.
    Philips, J., Millan, J., Vanacker, G., Lew, E., Galán, F., Ferrez, P., Van Brussel, H., Nuttin, M.: Adaptive shared control of a brain-actuated simulated wheelchair. In: 10th IEEE Int. Conf.on Rehabilitation Robotics, Noordwijk (2007)Google Scholar
  30. 30.
    Project, L.: LURCH – the autonomous wheelchair, http://airwiki.ws.dei.polimi.it/index.php/LURCH_The_autonomous_wheelchair (accessed May 2011)
  31. 31.
    Soh, H., Demiris, Y.: Towards Early Mobility Independence: An Intelligent Paediatric Wheelchair with Case Studies. In: IROS 2012 W. Progress, Challenges and Future Persp. in Navigation and Manipulation Assist for Robotic Wheelchairs, Vilamoura (2012)Google Scholar
  32. 32.
    Iturrate, I., Antelis, J., Kubler, A., Minguez, J.: Non-Invasive Brain-Actuated Wheelchair Based on a P300 Neurophysiological Protocol and Automated Navigation. IEEE Transactions on Robotics 25(3), 614–627 (2009)CrossRefGoogle Scholar
  33. 33.
    Carlson, T., Leeb, R., Chavarriaga, R., Millán, J.R.: The Birth of the Brain–Controlled Wheelchair. In: IEEE/RSJ – IROS 2012, Vila Moura, Portugal (2012)Google Scholar
  34. 34.
    Hamagami, T., Hirata, H.: Development of Intelligent Wheelchair acquiring autonomous, cooperative and collaborative behaviour. In: IEEE Int. Conf. Systems Man and Cyb. (2004)Google Scholar
  35. 35.
    Lakany, H.: Steering a wheelchair by thought. IEE Digest 2005(11059), 199–202 (2005)Google Scholar
  36. 36.
    Rebsamen, B., Burdet, E., Guan, C., Zhang, H., Teo, C.L., Zeng, Q., Ang, M., Laugier, C.: A Brain-Controlled Wheelchair Based on P300 and Path Guidance. In: IEEE/RAS-EMBS Int. Conf. (2006)Google Scholar
  37. 37.
    Balnd, E.: Technology & Science (February 27, 2009), http://dsc.discovery.com/news/2009/02/27/wheelchair-thought.html (accessed January 2010)
  38. 38.
    Nisbet, P.: Who’s intelligent? Wheelchair, driver or both? In: Proc. IEEE Conference on Control Applications, Glasgow (2002)Google Scholar
  39. 39.
    Nisbet, P., Craig, J., Odor, J., Aitken, S.: Smart’ Wheelchairs for Mobility Training. In: Technology and Disability (1996)Google Scholar
  40. 40.
    Odor, J., Watson, M., Nisbet, P., Craig, I.: The CALL Centre Smart Wheelchair Handbook 1.5. CALL Centre (2000)Google Scholar
  41. 41.
    Ribeiro, F.: Enigma: Cadeira de rodas omnidireccional. Robótica (66), 50–51 (2007)Google Scholar
  42. 42.
    Figueiredo, L.: Projecto MagicKey (2011), http://www.magickey.ipg.pt/Projecto.aspx
  43. 43.
    Pires, G., Nunes, U.: A Wheelchair Steered through Voice Commands and Assisted by a Reactive Fuzzy-Logic Controller. J. Int. and Robotic Systems (34), 301–314 (2002)Google Scholar
  44. 44.
    Centimfe, Projecto Palmiber – Plat. Apoio Lúdico à Mobilidade Aumentativa Iberoamericana (2010), http://www.centimfe.com/centimfe/pt/Projects/EmCurso/Palmiber_01/ (accessed February 2010)
  45. 45.
    Faria, B.M., Reis, L.P., Lau, N.: Adapted Control Methods for Cerebral Palsy Users of an Intelligent Wheelchair, Special Issue on Autonomous Robot Systems. Journal of Intelligent and Robotic Systems, ISSN: 1573-0409 (Selected and extended papers from ICARSC 2013), JINT-D-13-00270 ISSN: 0921-0296Google Scholar
  46. 46.
    Faria, B.M., Ferreira, L.M., Reis, L.P., Lau, N., Petry, M.: Intelligent Wheelchair Manual Control Methods: A Usability Study by Cerebral Palsy Patients. In: Correia, L., Reis, L.P., Cascalho, J. (eds.) EPIA 2013. LNCS, vol. 8154, pp. 271–282. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  47. 47.
    Faria, B.M., Reis, L.P., Lau, N., Soares, J.C., Vasconcelos, S.: Patient Classification and Automatic Configuration of an Intelligent Wheelchair. In: Filipe, J., Fred, A. (eds.) ICAART 2012. CCIS, vol. 358, pp. 268–282. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  48. 48.
    Faria, B.M., Vasconcelos, S., Reis, L.P., Lau, N.: Evaluation of Distinct Input Methods of an Intelligent Wheelchair in Simulated and Real Environments: A Performance and Usability Study. Assistive Technology Journal, RESNA 25(2), 88–98 (2013) ISSN: 1040-0435, doi: 10.1080/10400435.2012.723297Google Scholar
  49. 49.
    Petry, M., Moreira, A.P., Faria, B.M., Reis, L.P.: IntellWheels: Intelligent Wheelchair With User-centered Design. In: IEEE 15th International Conference on e-Health Networking, Applications and Services-Healthcom, Lisbon, Portugal, October 9-12, pp. 392–396 (2013)Google Scholar
  50. 50.
    Faria, B.M., Reis, L.P., Lau, N.: Cerebral Palsy EEG signals Classification: Facial Expressions and Thoughts for Driving an Intelligent Wheelchair. In: IEEE International Conference on Data Mining 2012, Biological Data Mining and its Applications in Healthcare Workshop, Brussels, December 10-13 (2012)Google Scholar
  51. 51.
    Faria, B.M., Vasconcelos, S., Reis, L.P., Lau, N.: A Methodology for Creating Intelligent Wheelchair Users’ Profiles. In: Filipe, J., Fred, A. (eds.) ICAART 2012. CCIS, vol. 358, pp. 171–179. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  52. 52.
    Abellard, P., Randria, I., Abellard, A., Khelifa, M., Ramanantsizehena, P.: Electric Wheelchair Navigation Simulators: why, when, how? In: Mechatronic Systems Applications, pp. 161–168 (2010)Google Scholar
  53. 53.
    Pithon, T., Weiss, T., Richir, S., Klinger, E.: Wheelchair simulators: A review. Technology and Disability 21(1-2), 1–10 (2009)Google Scholar
  54. 54.
    Mestre, D., Pergandi, J., Mallet, P.: Virtual reality as a tool for the development of a smart wheelchair. In: Virtual Reality Int. Conference (2004)Google Scholar
  55. 55.
    Team, I.-C.: Electric wheelchair presented in NIWEEK 2009, Austin Texas (2009)Google Scholar
  56. 56.
    Hubbard, E.: 3D Simulator for Intelligent Wheelchair (February 2012), http://www.youtube.com/watch?v=MBUCAfsDu6U (accessed September 2012)
  57. 57.
    Schmeler, M., Johnson, D., Granic, J.: Powered wheelchair mobility simulator. In: RESNA 16th Annual Conference, Las Vegas (1993)Google Scholar
  58. 58.
    Ding, D., Cooper, R., Guo, S., Corfman, T.: Robust velocity control simulation of a power wheelchair. In: RESNA 26th Int. Annual Conference, Atlanta (2003)Google Scholar
  59. 59.
    Swan, E., Stredney, D., Carlson, W.: The determination of wheelchair user proficiency and environmental accessibility through virtual simulation. In: Second Annual Int. Conf. on Virtual Reality and Persons with Disabilities, California (1994)Google Scholar
  60. 60.
    Inman, D., Loge, K.: Teaching motorized wheelchair operation in virtual reality. In: CSUN Virtual Reality Conference, Northridge (1995)Google Scholar
  61. 61.
    Inman, D., Loge, K., Cram, A.: Teaching orientation and mobility skills to blind children using computer generated 3-D sound environments. In: ICAD Int. Conf. on Auditory Display, Atlanta (2000)Google Scholar
  62. 62.
    Hasdai, A., Jessel, A., Weiss, P.: Use of a computer simulator for training children with disabilities in the operation of a powered wheelchair. American Journal Occupational Therapy 52(3), 215–220 (1998)CrossRefGoogle Scholar
  63. 63.
    Inoue, T., Hirose, H., Sudoh, Y., Hase, K.: Development of a simulator of powered wheelchair. In: RESNA 1998 Annual Conference (1998)Google Scholar
  64. 64.
    Harrison, A., Derwent, G., Enticknap, A., Rose, F., Attree, E.: The role of virtual reality technology in the assessment and training of inexperienced powered wheelchair users. Disability & Rehabilitation 24(11-12), 599–606 (2002)CrossRefGoogle Scholar
  65. 65.
    Grant, M., Harrison, C., Conway, B.: Wheelchair Simulation. In: CWUAAT 2004, Cambridge (2004)Google Scholar
  66. 66.
    Stott, I., Sanders, D.: The use of virtual reality to train powered wheelchair users and test new wheelchair systems. Int. Journal of Rehabilitation Research 23(4), 321–326 (2000)CrossRefGoogle Scholar
  67. 67.
    Adelola, I., Cox, S.: VEMS – Training wheelchair drivers. Assistive Technology, 757–761 (2005)Google Scholar
  68. 68.
    Sonar, A.V., Burdick, K.D., Begin, R.R., Resch, E.M., Thompson, E.M., Thacher, E., Searleman, J., Fulk, G., Carroll, J.J.: Development of a Virtual Reality Based Power Wheel Chair Simulator. In: IEEE Int. Conf.on Mechatronics and Automation, Niagara Falls (2005)Google Scholar
  69. 69.
    Spaeth, D.M., Mahajan, H., Karmarkar, A., Collins, D., Cooper, R.A., Boninger, M.L.: Development of a Wheelchair Virtual Driving Environment: Trials With Subjects With Traumatic Brain Injury. Archives of Physical Medicine and Rehabilitation 89(5), 996–1003 (2008)CrossRefGoogle Scholar
  70. 70.
    Randria, I., Abellard, A., Ben Khelifa, M., Abellard, P., Ramanantsizehena, P.: Evaluation of trajectory applied to collaborative rehabilitation for a wheelchair driving simulator. In: 4th European Congress for Medical and Biomedical Engineering, Antwerp (2008)Google Scholar
  71. 71.
    Bin, L., Blackwelder, E., Chuah, J.: Wheelchair Simulator (2009), http://www.cise.ufl.edu/~jchuah/projects/wheelchair/ (accessed September 2012)
  72. 72.
    Chong, J.N.F., Sorrento, G., Routhier, F., Boissy, P.: Comparison of powered wheelchair driving performance in a real and in a simulated environment. In: Int. Conf. Montreal (2011)Google Scholar
  73. 73.
    LifeTool: WheelSim, Spectronics - Inclusive Learning Technologies (2012), http://www.spectronicsinoz.com/product/wheelsim/ (accessed September 2012)

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Brígida Mónica Faria
    • 1
    • 2
    • 3
  • Luís Paulo Reis
    • 3
    • 4
  • Nuno Lau
    • 2
    • 5
  1. 1.ESTSP/IPP – Esc. Sup. de Tecnologia da Saúde do PortoInst. Polit. do PortoPortoPortugal
  2. 2.IEETA – Instituto de Eng. Electrónica e Telemática de AveiroAveiroPortugal
  3. 3.Lab. Inteligência Artificial e Ciência de ComputadoresLIACCPortoPortugal
  4. 4.EEUM/DSI - Escola de Engenharia da Universidade do MinhoGuimarãesPortugal
  5. 5.DETI/UA – Dep. Eletrónica, Telecomunicações e InformáticaUniv. AveiroAveiroPortugal

Personalised recommendations