Advertisement

An Approach to Stigmergy Issues Based on the Recursive Application of Binary Neighbouring Rules

  • Maria Teresa Signes Pont
  • Higinio Mora Mora
  • Juan Manuel García Chamizo
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 275)

Abstract

In this paper we define a set of binary neighbouring rules that can model the elementary action performed by an agent on its environment. The recursive application of the rules provide time sequences (behavioural patterns) which have the capability to model cues since they mimic both the interpretation of the message by an agent and its following behaviour triggered by the interpreted message. The structural analysis of the cues provides the key for the generation of social communication and provides a means to mimic a stigmergy structure.

Keywords

binary neighbouring rules recursive application behavioural patterns cues stigmergy social communication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prigogine, I.: The End of Certainty. The Free Press, New York (1997)Google Scholar
  2. 2.
    Chapouthier, G.: Mosaic structures – a working hypothesis for the complexity of living organisms, E-Logos. Electronic Journal for Philosophy 17 (2009)Google Scholar
  3. 3.
    Zayed, J.M., Nouvel, N., Rauwald, U., Scherman, O.A.: Chemical Complexity – supramolecular self-assembly of synthetic and biological building blocks in water. Chemical Society Reviews 39, 2806–2816 (2010)CrossRefGoogle Scholar
  4. 4.
    Solomon, S., Shir, E.: Complexity; a science at 30 (2003)Google Scholar
  5. 5.
    Bonabeau, E., et al.: Self-organization in social insects. Trends in Ecology and Evolution 12, 188–193 (1997)CrossRefGoogle Scholar
  6. 6.
    Anderson, C., McShea, D.W.: Individual versus social complexity, with particular reference to ant colonies. Biol. 76, 211–223 (2001)Google Scholar
  7. 7.
    Polte, T.R., et al.: Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress. Am. J. Physiol. Cell. Physiol. 286, 518–528 (2004)CrossRefGoogle Scholar
  8. 8.
    Werfel, J., Nagpal, R.: Extended Stigmergy in Collective Construction. IEEE Intelleigent Systems 21(2) (2006)Google Scholar
  9. 9.
    Grassé, P.P.: La reconstruction du nid et les coordinations inter-individuelles chez Belicositermes natalensis et Cubitermes sp. La théorie de la Stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux 6, 41–80 (1959)CrossRefGoogle Scholar
  10. 10.
    Marsh, L., Onof, C.: Stigmergic epistemology, stigmergic cognition. Cognitive Systems Research, doi:10.1016/j.cogsys.2007.06.009Google Scholar
  11. 11.
    Wolfram, S.: Statistical Mechanics of Cellular Automata. Reviews of Modern Physics 55, 601–644 (1983)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Wolfram, S.: Computation theory of cellular automata. Communications in Mathematical Physics 96, 15–57 (1984)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Wolfram, S.: Cellular automata as models of complexity. Nature 311(5985), 419–424 (1984)CrossRefGoogle Scholar
  14. 14.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Inc. (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Maria Teresa Signes Pont
    • 1
  • Higinio Mora Mora
    • 1
  • Juan Manuel García Chamizo
    • 1
  1. 1.Universidad de AlicanteSan Vicente del Raspeig-AlicanteSpain

Personalised recommendations