Cross-Artefacts for the Purpose of Education

  • Dulce Mota
  • Luis Paulo Reis
  • Carlos Vaz de Carvalho
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 276)

Abstract

The utility of computer-based teaching-learning systems is generally accepted but several relevant issues remain unsolved in the design of those systems, namely, how to adapt to a learner´s specific needs; how to plan corrective feedback; how to fit teaching-learning-assessment techniques to a specific educational context; how to choose the educational tools more appropriate to a teaching-learning-assessment method; how to choose a language to express a pedagogical model; how to adequate the teaching-learning-assessment activities deployment to a specific educational format (distance, face-to-face or blending learning). The aim of this paper is threefold: first, it surveys the most relevant computer-based teaching-learning systems since 1960. Second, it describes the learning design paradigm supported by specific modelling languages. Finally, it presents some reflections on educational material design, more specifically teaching-learning activities, that should be considered by teachers. Those considerations aim at bridging the gap between relevant theoretical aspects and the teachers’ daily activities in the design of teaching-learning scenarios.

Keywords

computer-based teaching-learning systems learning design scenarios teaching-learning activities educational tools design tools 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schunk, D.H.: Learning Theories: An Educational Perpective. Prentice Hall (2003)Google Scholar
  2. 2.
    Collis, B.: Tecnología de la información en la educación superior: paradigmas emergentes. In: Revista de Universidad y Sociadad del Conocimiento, vol. 2(2) (2006) ISSN 1698-580XGoogle Scholar
  3. 3.
    Moore, M.G., Kearsley, G.: Distance Education. A systems view of online learning, 3a edn. Wadsworth Publishing Co. Inc. (2011) ISBN-13: 978-1111520991Google Scholar
  4. 4.
    JISC: Effective Practice with e-Learning. A good practice guide in designing for learning (2004), http://www.jisc.ac.uk/elearning_pedagogy.html
  5. 5.
    Nichols, M.: A theory for eLearning. Educational Technology & Society 6(2) (2003) ISSN 1436-4522Google Scholar
  6. 6.
    Siemens, G.: A learning theory for the digital age (2004), http://www.elearnspace.org/Articles/connectivism.htm
  7. 7.
    Gardner, H.: Frames of mind: The theory of multiple intelligences. Basic Books, New York (1983)Google Scholar
  8. 8.
    Goleman, D.: Emotional Intelligence. Bantam Books, New York (1995)Google Scholar
  9. 9.
    Sternberg, R.: Beyond IQ: A triachic theory of human intelligence. Cambridge University Press, New York (1985)Google Scholar
  10. 10.
    Sternberg, R.J., Grigorenko, E.L.: Are cognitive styles still in style? American Psychologist 52, 700–712 (1997)CrossRefGoogle Scholar
  11. 11.
    Sternberg, R.J., Grigorenko, E.L., Li-Fang, Z.: A Capsule History of Theory and Research on Styles. In: Sternberg, R. (ed.) Perpectives on Thinking, Learning and Cognitive Styles, LEA London (2001) ISBN: 0-8058-3431-1Google Scholar
  12. 12.
    Stash, N., De Bra, P.: Incorporating cognitive styles in AHA! (The adaptive hypermedia architecture). In: Proceedings of the IASTED International Conference WEB-BASED EDUCATION, pp. 378–383 (2004)Google Scholar
  13. 13.
    Martins, C., Faria, L., Carrapatoso, E.: An Adaptive Educational System For Higher Education. In: Proceedings of the 14th EUNIS 2008 International Conference of European University Information Systems, Denmark, June 24-27 (2008)Google Scholar
  14. 14.
    Mota, D., Carvalho, C.V.: Personalized Learning Activities based on the Student’s Intelligence skills. In: Proceedings of the 9th IEEE International Conference on Advanced Learning Technologies, ICALT 2009, Riga, Latvia, July 14-18 (2009)Google Scholar
  15. 15.
    Wenger, E.: Artificial Intelligence and Tutoring Systems. Morgan Kaufmann, Los Altos (1997)Google Scholar
  16. 16.
    Sleeman, D.H., Brown, J.S. (eds.): Intelligent Tutoring Systems. Academic Press, London (1982)Google Scholar
  17. 17.
    Self, J.: The defining characteristics of intelligent tutoring systems research: ITSs care, precisely. International Journal of Artificial Intelligence in Education 10, 350–364 (1999)Google Scholar
  18. 18.
    Frasson, C., Mengelle, T., Aïmuer, E.: Using Pedagogical Agents in a multi-strategic Itelligent Tutoring System. In: Workshop on Pedagogical agents in AI-ED 1997, World Conference on Artificial Intelligence and Education, Japan (August 1997)Google Scholar
  19. 19.
    Chan, T.-W.: Learning companion systems, social learning systems, and the global social learning club. Journal of Artificial Intelligence in Education 7(2), 125–159 (1996)Google Scholar
  20. 20.
    Johnson, W.L., Rickel, J.W., Lester, J.C.: Animated Pedagogical Agents: Face-to-Face Interaction in Interactive Learning Environments. International Journal of Artificial Intelligence in Education 11, 47–78 (2000)Google Scholar
  21. 21.
    Martinho, C., Paiva, A., Gomes, M.R.: Emotions for a Motion: Rapid Development of Believable Pathematic Agents in Intelligent Virtual Environments. Applied Artificial Intelligence 14(1), 33–68 (2000)CrossRefGoogle Scholar
  22. 22.
    Giraffa, L.M.M., Viccari, R.M., Self, J.A.: Multi-Agent Based Pedagogical Games. In: Goettl, B.P., Halff, H.M., Redfield, C.L., Shute, V.J. (eds.) ITS 1998. LNCS, vol. 1452, p. 607. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  23. 23.
    Brusilovsky, P.: Methods and techniques of adaptive hypermedia. International Journal of User Modeling and User-Adapted Interaction 6(2-3), 87–129 (1996)CrossRefGoogle Scholar
  24. 24.
    Brusilovsky, P., Millán, E.: User Models for Adaptive Hypermedia and Adaptive Educational Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 3–53. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Brusilovsky, P.: Adaptive Hypermedia. User Modeling and User-Adapted Interaction 11(1-2), 87–110 (2001)CrossRefMATHGoogle Scholar
  26. 26.
    De Bra, P., Calvi, L.: AHA! An open Adaptive Hypermedia Architecture. The New Review of Hypermedia and Multimedia 4, 115–139 (1998)CrossRefGoogle Scholar
  27. 27.
    Cameron, L.: How learning design can illuminate teaching practice. In: The Future of Learning Design Conference (2010), http://ro.uow.edu.au/fld/09/Program/3
  28. 28.
    Beetham, H.: An approach to learning activity design. Rethinking Pedagogy for a Digital Age. In: Beethan, H., Sharpe, R. (eds.) Designing and Delivering e-Learning. Routledge, Taylor & Francis Group (2007) ISBN 978-0-415-40874-5Google Scholar
  29. 29.
    Koper, R.: An Introduction to Learning Design. In: Koper, R., Tattersall, C. (eds.) A Handbook on Modelling and Delivering Networked Education and Training, pp. 3–20. Springer, Heidelberg (2005) ISBN: 3-540-22814-4Google Scholar
  30. 30.
    IMS Global Learning Consortium, http://www.imsglobal.org/learningdesign
  31. 31.
    Conole, G.: Tools and resources to guide practice. Rethinking Pedagogy for a Digital Age. In: Beethan, H., Sharpe, R. (eds.) Designing and Delivering e-Learning. Routledge, Taylor & Francis Group (2007) ISBN 978-0-415-40874-5Google Scholar
  32. 32.
    Mayes, T., Freitas, S.: Learning and e-learning. In: Beetham, H., Sharpe, R. (eds.) The Role of Theory, Rethinking Pedagogy for a Digital Age- Designing and Delivering e-Learning, pp. 13–25. Routledge Taylor and Francis Group (2007)Google Scholar
  33. 33.
    OUNL. CopperAuthor project website (2010), http://www.copperauthor.org/
  34. 34.
    Miao, Y., Hoeksema, K., Hoppe, H., Harrer, A.: CSCL scripts: Modelling features and potential use. In: Koschmann, T., Suthers, D., Chan, T.W. (eds.) Proceedings of Computer Supported Collaborative Learning 2005: The Next 10 Years!, pp. 423–432. Lawrence Erlbaum, Mahwah (2005)Google Scholar
  35. 35.
    Paquette, G., Teja, I., Léonard, M., Lundgren-Cayrol, K., Marino, O.: An instructional engineering method and tool for the design of Units of Learning. In: Learning Design: A Handbook on Modelling and Delivering Networked Education and Training, pp. 161–184. Springer, Heidelberg (2005) ISBN: 3-540-22814-4Google Scholar
  36. 36.
    Karampiperis, P., Sampson, D.: Designing learning services for open learning systems utilizing Learning Design. In: Uskov, V. (ed.) Proceedings of the 4th IASTED International Conference on Web-based Education, pp. 279–284. ACTA Press, Anaheim (2005)Google Scholar
  37. 37.
    Hernández-Leo, D., Villasclaras-Fernández, E.D., Asensio-Pérez, J.I., Dimitiadis, Y., Jorrín-Abellán, I.M., Ruiz-Requies, I., Rubia-Avi, B.: COLLAGE: A collaborative Learning Design editor based on patterns. Educational Technological & Society 9(1), 58–71 (2006)Google Scholar
  38. 38.
  39. 39.
    LAMS Foundation, Learning activity management system, http://www.lamsfoundation.org
  40. 40.
    Mota, D., Reis, L.P., Carvalho, C.V.: Fostering Collaborative Work between Educators in Higher Education. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, SMC 2011, Anchorage, Alaska, EUA, October 9-12, pp. 1286–1291 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dulce Mota
    • 1
    • 2
    • 3
  • Luis Paulo Reis
    • 4
    • 5
  • Carlos Vaz de Carvalho
    • 2
    • 3
  1. 1.FEUP - Faculty of EngineeringUniversity of PortoPortoPortugal
  2. 2.ISEP - School of EngineeringPolytechnic of PortoPortoPortugal
  3. 3.GILT – Graphics, Interaction and Learning TechnologiesPortoPortugal
  4. 4.EEUM/DSI – School of Engineering, Information Systems DepartmentUniversity of MinhoGuimarãesPortugal
  5. 5.LIACC – Artificial Intelligence and Computer Science LabPortoPortugal

Personalised recommendations