Skip to main content

Root-Nodule Bacteria of Legumes Growing in Semi-Arid African Soils and Other Areas of the World

  • Chapter
  • First Online:
Bacterial Diversity in Sustainable Agriculture

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 1))

Abstract

In Africa, arid and semi-arid soils are characterized by a diverse occurrence of plants including nodulated legumes which are adapted to the prevailing and often harsh environmental conditions. Such soils also harbour a large diversity of indigenous rhizobial symbionts (comparable to legume diversity) and other bacterial endophytes that have a potential to be developed into elite strains to be used as inoculum. However, very few studies have investigated the diversity of root-nodule bacteria on African soils, the main reason being that funds for research are often lacking. Discoveries of new rhizobial species are to be expected from different soil ecologies that are likely to be inhabited by various types of microorganisms. It is concluded that the semi-arid and arid African soils have rhizobia that is possibly as equally diverse as their host legumes. Research in these areas is likely to find novel species with a great potential for use in agricultural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achouak W, Christen R, Barakat M, Martel MH, Heulin T (1999) Burkholderia caribensis sp. nov., an exopolysaccharide-producing bacterium isolated from vertisol microaggregates in Martinique. Int J Syst Evol Microbiol 49:787–794

    CAS  Google Scholar 

  • Amarger N, Macheret V, Laguerre G (1997) Rhizobium gallicum sp. nov., and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47:996–1006

    CAS  PubMed  Google Scholar 

  • An DS, Im WT, Yang HC, Lee ST (2006) Shinella granuli gen. nov., sp. nov., and proposal of the reclassification of Zoogloea ramigera ATCC 19623 as Shinella zoogloeoides sp. nov. Int J Syst Evol Microbiol 56:443–448

    CAS  PubMed  Google Scholar 

  • Angus AA, Agapakis CM, Fong S, Yerrapragada S, de los Santos P, Yang P, Song N, Kano S, Caballero-Mellado J, de Faria SM, Dakora FD, George Weinstock G, Hirsch AM (2013) Plant-associated symbiotic Burkholderia species lack hallmark strategies required in mammalian pathogenesis. PLoS ONE 9(1):e83779

    Google Scholar 

  • Appunu C, N’zoue A, Moulin L, Depret G, Laguerre G (2009) Vigna mungo, V. radiata and V. unguiculata plants sampled in different agronomical-ecological-climatic regions of India are nodulated by Bradyrhizobium yuanmingense. Syst Appl Microbiol 32:460–470

    CAS  PubMed  Google Scholar 

  • Ardley JK, Parker MA, De Meyer SE, Trengove RD, O’Hara GW, Reeve WG, Yates RJ, Dilworth MJ, Willems A, Howieson JG (2012) Microvirga lupini sp. nov., Microvirga lotononidis sp. nov., and Microvirga zambiensis sp. nov. are alphaproteobacterial root nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 62(11):2579–2588

    CAS  PubMed  Google Scholar 

  • Azam-Ali SN, Sesay A, Karikari SK, Massawe FJ, Aguilar-Manjarrez J, Bannayan M, Hampson KJ (2001) Assessing the potential of an underutilized crop-A case study using Bambara groundnut. Exp Agric 37:433–472

    Google Scholar 

  • Bai Y, Zhou X, Smith D (2003) Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci 43:1774–1781

    Google Scholar 

  • Baldwin IL, Fred EB (1929) Nomenclature of the root-nodule bacteria of the Leguminosae. J Bacteriol 17:141–150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartsev AV, Boukli NM, Deakin WJ, Staehelin C, Broughton WJ (2003) Purification and phosphorylation of the effector protein NopL from Rhizobium sp. NGR234. FEBS Lett 554(3):271–274

    CAS  PubMed  Google Scholar 

  • Beijerinck MW (1888) Die Bacterien der Papilionaceeknollchen. Botanische Zeitung 46:725–804

    Google Scholar 

  • Beijerinck MW, van Delden A (1902) Ueber die assimilation des freien stickstoffs durch bakterien. Zentbl Bakt Parasitenk Infekt Abt II 9:3–43

    CAS  Google Scholar 

  • Belane AK, Dakora FD (2009) Measurement of N2 fixation in 30 cowpea (Vigna unguiculata L. Walp) genotypes under field conditions in Ghana using 15N natural abundance technique. Symbiosis 48:47–57

    CAS  Google Scholar 

  • Berge O, Lodhi A, Brandelet G, Santaella C, Roncato MA, Christen R, Heulin T, Achouak W (2009) Rhizobium alamii sp. nov., an exopolysaccharide-producing species isolated from legume and non-legume rhizospheres. Int J Syst Evol Microbiol 59:367–372

    CAS  PubMed  Google Scholar 

  • Beukes CW, Venter SN, Law IJ, Phalane FL, Steenkamp ET (2013) South African papilionoid legumes are nodulated by diverse Burkholderia with unique nodulation and nitrogen-fixation loci. PloS ONE 8(7):e68406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bibi F, Chung EJ, Khan A, Jeon CO, Chung YR (2012) Rhizobium halophytocola sp. nov., isolated from the root of a coastal dune plant. Int J Syst Evol Microbiol 62:1997–2003

    CAS  PubMed  Google Scholar 

  • Bogino P, Banchio E, Bonfiglio C, Giordano W (2008) Competitiveness of a Bradyrhizobium sp. strain in soils containing indigenous rhizobia. Current Microbiol 56:66–72

    Google Scholar 

  • Bloem JF, Law IJ (2001) Determination of competitive abilities of Bradyrhizobium japonicum strains in soils from soybean production regions in South Africa. Biol Fertility Soil 33:181–189

    CAS  Google Scholar 

  • Bouzar H, Jones JB (2001) Agrobacterium larrymoorei sp. nov., a pathogen isolated from aerial tumours of Ficus benjamina. Int J Syst Evol Microbiol 51(3):1023–1026

    CAS  PubMed  Google Scholar 

  • Burton JC (1979) Rhizobium species. In: Peppler HJ, Perlman D (eds) Microbial technology, 2nd ed., vol 1. Academic, New York, pp 29–58

    Google Scholar 

  • Chahboune R, Carro L, Peix A, Ramírez-Bahena MH, Barrijal S, Velázquez E, Bedmar EJ (2012) Bradyrhizobium rifense sp. nov. isolated from effective nodules of Cytisus villosus grown in the Moroccan Rif. Syst Appl Microbiol 35:302–305

    CAS  PubMed  Google Scholar 

  • Chen WX, Yan GH, Li JL (1988) Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Inte J Syst Bacteriol 38:392–397

    Google Scholar 

  • Chen WX, Li GS, Qi YL, Wang ET, Yuan HL, Li JL (1991) Rhizobium huakuii sp. nov. isolated from the root nodules of Astagalus sinicus. Int J Syst Bacteriol 41:275–280

    Google Scholar 

  • Chen W, Wang E, Wang S, Li Y, Chen X, Li Y (1995) Characterization of Rhizobium tianshanense sp. nov., a moderately and slow growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. Int J Syst Bacteriol 45:153–159

    CAS  PubMed  Google Scholar 

  • Chen WX, Tan ZY, Gao JL, Li Y, Wang ET (1997) Rhizobium hainanense sp. nov., isolated from tropical legumes. Int J Syst Bacteriol 47:870–873

    Google Scholar 

  • Chen WM, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M, Vandamme P (2001) Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735

    CAS  PubMed  Google Scholar 

  • Chen AM, James EK, Prescott AR, Kierans M, Sprent JI (2003) Nodulation of Mimosa sp. by the β-proteobacterium Ralstonia taiwanensis. Mol Plant Microbe Interact 16(12):1051–1061

    CAS  PubMed  Google Scholar 

  • Chen WM, James EK, Coenye T, Chou JH, Barrios E, De Faria SM, Elliott GN, Sheu SY, Sprent JI, Vandamme P (2006) Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa sp. from Taiwan and South America. Int J Syst Evol Microbiol 56:1847–1851

    CAS  PubMed  Google Scholar 

  • Chen WM, De Faria SM, James EK, Elliott GN, Lin KY, Chou JH, Sheu SY, Cnockaert M, Sprent JI, Vandamme P (2007) Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int J Syst Evol Microbiol 57:1055–1059

    CAS  PubMed  Google Scholar 

  • Chen WM, De Faria SM, Chou JH, James EK, Elliott GN, Sprent JI, Bontemps C, Young JPW, Vandamme P (2008) Burkholderia sabiae sp. nov., isolated from root nodules of Mimosa caesalpiniifolia. Int J Syst Evol Microbiol 58:2174–2179

    CAS  PubMed  Google Scholar 

  • Chen WM, Zhu WF, Bontemps C, Young JP, Wei GH (2011) Mesorhizobium camelthorni sp. nov., isolated from Alhagi sparsifolia. Int J Syst Evol Microbiol 61:574–579

    CAS  PubMed  Google Scholar 

  • Coenye T, Vandamme P (2003) Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729

    CAS  PubMed  Google Scholar 

  • Conn HJ (1942) Validity of the genus Alcaligenes. J Bacteriol 44:353–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Da Silva K, Cassetari Ade S, Lima AS, De Brandt E, Pinnock E, Vandamme P, Moreira FM (2012) Diazotrophic Burkholderia species isolated from the Amazon region exhibit phenotypical, functional and genetic diversity. Syst Appl Microbiol 35:253–262

    PubMed  Google Scholar 

  • Dall’Agnol RF, Ribeiro RA, Ormeño-Orrillo E, Rogel MA, Delamuta JR, Andrade DS, Martínez-Romero E, Hungria M (2013) Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. Int J Syst Evol Microbiol 63:4167–4173

    Google Scholar 

  • Dangeard PA (1926) Recherches sur les turbercles radicaux des Légumineuses. Botaniste (Paris) 16:1–275

    Google Scholar 

  • De Lajudie P, Willems A, Pot B, Dewettinck D, Maestrojuan G, Neyra M, Collins MD, Dreyfus B, Kersters K, Gillis M (1994) Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int J Syst Bacteriol 44:715–733

    Google Scholar 

  • De Lajudie P, Willems A, Nick G, Molouba F, Hoste B, Torck U, Neyra M, Collins MD, Dreyfus B, Kersters K, Lindström K, Gillis M (1998) Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48:369–382

    PubMed  Google Scholar 

  • Degefu T, Wolde-Meskel E, Liu B, Cleenwerck I, Willems A, Frostegård A (2012) Mesorhizobium shonense sp. nov., Mesorhizobium hawassense sp. nov. and Mesorhizobium abyssinicae sp. nov., isolated from root nodules of different agroforestry legume trees growing in southern Ethiopia. Int J Syst Evol Microbiol 63:1746–1753

    PubMed  Google Scholar 

  • Doku EV, Karikari SK (1971) Bambarra groundnut. Econ Bot 25:255–262

    Google Scholar 

  • Dreyfus B, Garcia JL, Gillis M (1988) Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol 38:89–98

    CAS  Google Scholar 

  • Eaglesham ARJ (1982) Assessing nitrogen contribution of cowpea (Vigna unguiculata) in monoculture and intercropping. In: Graham PH, Harris SC (eds) Biological nitrogen fixation technology for tropical agriculture. Centro International de Agricultura Tropical, Cali, pp 641–646

    Google Scholar 

  • Eaglesham ARJ, Ayanaba A, Ranga Rao V, Eskew DL (1981) Improving the nitrogen nutrition of maize by intercropping with cowpea. Soil Biol Biochem 13:169–171

    CAS  Google Scholar 

  • Eckhardt MM, Baldwin IL, Fred B (1931) Studies of the root nodule organism of Lupinus. J Bacteriol 21:273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott GN, Chen WM, Bontemps C, Chou JH, Young JPW, Sprent JI, James EK (2007a) Nodulation of Cyclopia sp. (Leguminosae, Papilionoideae) by Burkholderia tuberum. Ann Bot 100:403–1411

    Google Scholar 

  • Elliott GN, Chen M, Chou JH, Wang HC, Sheu SY, Perin L, Reis VM, Moulin L, Simon MF, Bontemps C, Sutherland JM, Bessi R, De Faria SM, Trinick MJ, Prescott AR, Sprent JI, James EK (2007b) Burkholderia phymatum is a highly effective nitrogen fixing symbiont of Mimosa sp. and fixes nitrogen ex planta. New Phytol 173:168–180

    CAS  Google Scholar 

  • Frank B (1889) Ueber die Pilzsymbiose der Leguminosen. Ber Deut Bot Ges 7:332–346

    Google Scholar 

  • Fred EB, Baldwin IL, Mccoy E (1932) Root nodule bacteria and leguminous plants. University of Wisconsin, Madison Libraries Parallel Press 5, Wisconsin

    Google Scholar 

  • Gao JL, Turner SL, Kan FL, Wang ET, Tan ZY, Qiu YH, Gu J, Terefework Z, Young JPW, Lindström K, Chen WX (2004) Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalus adsurgens growing in the northern regions of China. Int J Syst Evol Microbiol 54:2003–2012

    CAS  PubMed  Google Scholar 

  • García-Fraile P, Rivas R, Willems A, Peix A, Martens M, Martínez-Molina E, Mateos, PF, Velázquez E (2007) Rhizobium cellulosilyticum sp. nov., isolated from sawdust of Populus alba. Int J Syst Evol Microbiol 57:844–848

    PubMed  Google Scholar 

  • Ghosh W, Roy P (2006) Mesorhizobium thiogangeticum sp. nov., a novel sulfur-oxidizing chemolithoautotroph from rhizosphere soil of an Indian tropical leguminous plant. Int J Syst Evol Microbiol 56:91–97

    CAS  PubMed  Google Scholar 

  • Graham PH, Sadowsky MJ, Keyser HH, Barnet M, Bradley RS, Cooper JE, De Ley DJ, Jarvis BDW, Roslycky EB, Strijdom BW, Young JPW (1991) Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int J Syst Bacteriol 41:582–587

    Google Scholar 

  • Gu CT, Wang ET, Tian CF, Han TX, Chen WF, Sui XH, Chen WX (2008) Rhizobium miluonense sp. nov., a symbiotic bacterium isolated from Lespedeza root nodules. Int J Syst Evol Microbiol 58:1364–1368

    CAS  PubMed  Google Scholar 

  • Guan SH, Chen WF, Wang ET, Lu YL, Yan XR, Zhang XX, Chen WX (2008) Mesorhizobium caraganae sp. nov., a novel rhizobial species nodulated with Caragana sp. in China. Int J Syst Evol Microbiol 58:2646–2653

    CAS  PubMed  Google Scholar 

  • Gueye F, Moulin L, Sylla S, Ndoye I, Be´na G (1990) Genetic diversity and distribution of Bradyrhizobium and Azorhizobium strains associated with the herb legume Zornia glochidiata sampled from across Senegal. Syst Appl Microbiol 32:387–399

    Google Scholar 

  • Gürtler V (1999) The role of recombination and mutation in 16S-23S rDNA spacer rearrangements. Gene 238:241–252

    PubMed  Google Scholar 

  • Gürtler V, Mayall BC (1999) rDNA spacer rearrangements and concerted evolution. Microbiology 145:2–3

    PubMed  Google Scholar 

  • Gürtler V, Mayall BC (2001) Genomic approaches to typing, taxonomy and evolution of bacterial isolates. Int J Syst Evol Microbiol 51:3–16

    PubMed  Google Scholar 

  • Han TX, Han LL, Wu LJ, Chen WF, Sui XH, Gu JG, Wang ET, Chen WX (2008) Mesorhiozobium gobiense sp. nov. and Mesorhizobium tarimense sp. nov., isolated from wild legumes growing in desert soils of Xinjiang, China. Int J Syst Evol Microbiol 58:2610–2618

    CAS  PubMed  Google Scholar 

  • Hou BC, Wang ET, Li Y Jr, Jia RZ, Chen WF, Gao Y, Dong RJ, Chen WX (2009) Rhizobium tibeticum sp nov., a symbiotic bacterium isolated from Trigonella archiducis-nicolai (Sirj.) Vassilcz. Int J Syst Evol Microbiol 59:3051–3057

    CAS  PubMed  Google Scholar 

  • Hunter WJ, Kuykendall LD, Manter DK (2007) Rhizobium selenireducens sp. nov.: a selenite reducing alphaproteobacteria isolate from a bioreactor. Curr Microbiol 55:455–460

    CAS  PubMed  Google Scholar 

  • Islam MS, Kawasaki H, Muramatsu Y, Nakagawa Y, Seki T (2010) Bradyrhizobium iriomotense sp. nov., isolated from a tumor-like root of the legume Entada koshunensis from Iriomote Island in Japan. Biosci Biotechnol Biochem 72:1416–1429

    Google Scholar 

  • Jaftha JB, Strijdom BW, Steyn PL (2002) Characterisation of pigmented methylotrophic bacteria which nodulate Lotononis bainesii. Syst Appl Microbiol 25:440–449

    CAS  PubMed  Google Scholar 

  • Jarvis BDW, Pankhurst CE, Patel JJ (1982) Rhizobium loti, a new species of legume root nodule bacteria. Int J Syst Bacteriol 32:378–380

    Google Scholar 

  • Jarvis BDW, Van Berkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-Marel JC (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Evol Microbiol 47:895–898

    Google Scholar 

  • Jha P, Kumar A (2009) Characterization of novel plant growth promoting endophytic bacterium Achromobacter xylosoxidans from wheat plant. Micro Ecol 58:179–188

    Google Scholar 

  • Jordan DC (1982) Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139

    Google Scholar 

  • Jourand P, Giraud E, Bena G, Sy A, Willems A, Gillis M, Dreyfus B, De Lajudie P (2004) Methylobacterium nodulans sp. nov., for a group of aerobic, factultatively methylotrophic, legume root-nodule forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 54:2269–2273

    CAS  PubMed  Google Scholar 

  • Kanu SA, Dakora FD (2012) Symbiotic nitrogen contribution and diversity of root nodule bacteria nodulating Psoralea species in the Cape fynbos of South Africa. Soil Biol Biochem 54:68–76

    CAS  Google Scholar 

  • Kaur J, Verma M, Lal R (2011) Rhizobium rosettiformans sp. nov., isolated from a hexachlorocyclohexane dump site, and reclassification of Blastobacter aggregatus Hirsch and Müller 1986 as Rhizobium aggregatum comb. nov. Int J Syst Evol Microbiol 61:1218–1225

    CAS  PubMed  Google Scholar 

  • Kittiwongwattana C, Thawai C (2013) Rhizobium paknamense sp. nov., isolated from lesser duckweeds (Lemna aequinoctialis). Int J Syst Evol Microbiol 63:3823–3828

    CAS  PubMed  Google Scholar 

  • Kloepper JW, Schroth MN, Miller TD (1980) Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70(11):1078–1082

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7(2):39–44

    Google Scholar 

  • Krasova-Wade T, Neyra M (2007) Optimization of DNA isolation from legume nodules. Lett Appl Microbiol 45:95–99

    CAS  PubMed  Google Scholar 

  • Krasova-Wade T, Ndoye I, Braconnier S, Sarr B, De Lajudie P, Neyra M (2003) Diversity of indigeneous bradyrhizobia associated with 3 cowpea cultivars (Vigna unguiculata (L.) Walp.) grow under limited and favorable water conditions in Senegal (West Africa). Afr J Biotechnol 21:13–22

    Google Scholar 

  • Kuykendall LD (2005) Genus I. Bradyrhizobium. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology (2nd edn), vol. 2, part C. Springer, New York, pp 438–443

    Google Scholar 

  • Kuykendall LD, Saxena B, Devine TE, Udell SE (1992) Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for B. elkanii sp. nov. Can J Microbiol 38:501–505

    CAS  Google Scholar 

  • Laguerre G, Allard MR, Charnay MP, Louvrier P, Mazurier SI, Rigottier-Gois L, Armager N (1996) Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: applications to Rhizobium leguminosarum and its different biovars. Appl Environ Microbiol 60:56–63

    Google Scholar 

  • Laguerre GP, Van Berkum P, Armager N, Prevost D (1997) Genetic diversity of rhizobial symbionts isolated from legumes species within the genera Astralagus, Oxytropis and Onobryxhis. Appl Environ Microbiol 63:4748–4758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee M, Woo SG, Ten LN (2011) Shinella daejeonensis sp. nov., a nitrate-reducing bacterium isolated from sludge of a leachate treatment plant. Int J Syst Evol Microbiol 61:2123–2128

    CAS  PubMed  Google Scholar 

  • Li QQ, Wang ET, Chang YL, Zhang YZ, Zhang YM, Sui XH, Chen WF, Chen WX (2011) Ensifer sojae sp. nov., isolated from root nodules of Glycine max grown in saline-alkaline soils. Int J Syst Evol Microbiol 61:1981–1988

    CAS  PubMed  Google Scholar 

  • Lin DX, Wang ET, Tang H, Han TX, He YR, Guan SH, Chen WX (2008) Shinella kummerowiae sp. nov., a symbiotic bacterium isolated from root nodules of the herbal legume Kummerowia stipulacea. Int J Syst Evol Microbiol 58:1409–1413

    CAS  PubMed  Google Scholar 

  • Lin DX, Chen WF, Wang FQ, Hu D, Wang ET, Sui XH, Chen WX (2009) Rhizobium mesosinicum sp. nov., isolated from root nodules of three different legumes. Int J Syst Evol Microbiol 59:1919–1923

    PubMed  Google Scholar 

  • Lindström K (1989) Rhizobium galegae, a new species of legume root nodule bacteria. Int J Syst Bacteriol 39:365–367

    Google Scholar 

  • Lindstrom K, Paulin L, Roos C, Suominen L (1995) Nodulation genes of Rhizobium galegae. In: Tichonovich IA (ed) Nitrogen fixation: fundamentals and applications. Springer, Netherlands, pp 365–370

    Google Scholar 

  • Lindström K, Murwira M, Willems A, Altier N (2010) The biodiversity of beneficial microbe-host mutualism: the case of rhizobia. Res Microbiol 161(6):453–463

    PubMed  Google Scholar 

  • Liu XY, Wang ET, Li Y, Chen WX (2007) Diverse bacteria isolated from root nodules of Trifolium, Crotalaria and Mimosa grown in subtropical regions of China. Arch Microbiol 188:1–14

    CAS  PubMed  Google Scholar 

  • Liu TY, Li Y Jr, Liu XX, Sui XH, Zhang XX, Wang ET, Chen WX, Chen WF, Puławska J (2012) Rhizobium cauense sp. nov., isolated from root nodules of the herbaceous legume Kummerowia stipulacea grown in campus lawn soil. Syst Appl Microbiol 7:415–420

    Google Scholar 

  • Lloret L, Ormeño-Orrillo E, Rincón R, Martinez-Romero J, Rogel-Hernandez MA, Martinez-Romero E (2007) Ensifer mexicanus sp. nov. a new species nodulating Acacia angustissima (Mill.) Kuntze in Mexico. Syst Appl Microbiol 30:280–290

    CAS  PubMed  Google Scholar 

  • López-López A, Rogel MA, Ormeño-Orrillo E, Martínez-Romero J, Martínez-Romero E (2010) Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst Appl Microbiol 33:322–327

    PubMed  Google Scholar 

  • López-López A, Rogel-Hernández MA, Barois I, Ortiz Ceballos AI, Martínez J, Ormeño-Orrillo E, Martínez-Romero E (2012) Rhizobium grahamii sp. nov., from nodules of Dalea leporina, Leucaena leucocephala and Clitoria ternatea, and Rhizobium mesoamericanum sp. nov., from nodules of Phaseolus vulgaris, siratro, cowpea and Mimosa pudica. Int J Syst Evol Microbiol 62:2264–2271

    PubMed  Google Scholar 

  • LPWG (2013) Global legume diversity assessment: concepts, key indicators, and strategies. Taxon 62:249–266

    Google Scholar 

  • Lu, YL, Chen WF, Han L L, Wang ET, Chen WX (2009a) Rhizobium alkalisoli sp. nov., isolated from Caragana intermedia growing in saline-alkaline soils in the north of China. Int J Syst Evol Microbiol 59:3006–3011

    CAS  Google Scholar 

  • Lu, YL, Chen WF, Wang ET, Han LL, Zhang XX, Chen WX, Han SZ (2009b) Mesorhizoblum shangrilense sp. nov., isolated from root nodules of Caragana species. Int J Syst Evol Microbiol 59:3012–3018

    CAS  Google Scholar 

  • Lynch JM (2010) Beneficial interactions between micro-organisms and roots. Biotechnol Adv 8:335–346

    Google Scholar 

  • Maheshwari DK, Agarwal M, Dheeman S, Saraf M (2013) Potential of rhizobia in productivity enhancement of Macrotyloma uniflorum L. and Phaseolus vulgaris L. cultivated in the Western Himalaya. In: Maheshwari DK, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin, pp 127–165

    Google Scholar 

  • Makkar NS, Casida LE (1987) Cupriavidus necator gen. nov., sp. nov.: a nonobligate bacterial predator of bacteria in soil. Int J Syst Evol Microbiol 37:323–326

    Google Scholar 

  • Makoi JHJR, Chimphango SMB, Dakora FD (2009) Effect of legume plant density and mixed culture on symbiotic N2 fixation in five cowpea (Vigna unguiculata L. Walp.) genotypes in South Africa. Symbiosis 48:57–67

    CAS  Google Scholar 

  • Makoi JHJR, Chimphango SBM, Dakora FD (2010) Photosynthesis, water-use efficiency and δ13C of five cowpea (Vigna unguiculata L. Walp.) genotypes grown in mixed culture and at different densities with sorghum (Sorghor bicolor L.). Photosynthetica 48:143–155

    CAS  Google Scholar 

  • Mano H, Morisaki H (2008) Endophytic bacteria in the rice plant. Microbe Environ 23(2):109–117

    Google Scholar 

  • Mantelin S, Fischer-Le Saux M, Zakhia F, Béna G, Bonneau S, Jeder H, De Lajudie P, Cleyet-Marel JC (2006) Emended description of the genus Phyllobacterium and description of four novel species associated with plant roots: Phyllobacterium bourgognense sp. nov., Phyllobacterium ifriqiyense sp. nov., Phyllobacterium leguminum sp. nov. and Phyllobacterium brassicacearum sp. nov. Int J Syst Evol Microbiol 56:827–839

    CAS  PubMed  Google Scholar 

  • Martínez-Aguilar L, Caballero-Mellado J, Estrada-de los Santos P (2012) Transfer of Wautersia numazuensis to the genus Cupriavidus as Cupriavidus numazuensis comb. nov. Int J Syst Evol Microbiol 63:208–211

    PubMed  Google Scholar 

  • Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA (1991) Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41(3):417–426

    PubMed  Google Scholar 

  • Massol-Deya AA, Odelson DA, Robert FH, Tiedje JM (1995) Bacterial community fingerprinting of amplified 16S and 16-23S ribosomal DNA gene sequences and restriction endonuclease analysis ARDRA. In: Kowalchuk GA, de Bruijn FJ, Head IM (eds) Molecular microbial ecology manual. Springer, Netherlands, pp 289–296

    Google Scholar 

  • Mathu S, Herrmann L, Pieter P, Matiru V, Mwirichia R, Lesueur D (2012) Potential of indigenous bradyrhizobia versus commercial inoculants to improve cowpea (Vigna unguiculata L. walp.) and green gram (Vigna radiata L. wilczek.) yields in Kenya. Soil Sci Plant Nutr 58:750–763

    Google Scholar 

  • Matsui T, Shinzato N, Tamaki H, Muramatsu M, Hanada S (2009) Shinella yambaruensis sp. nov., a 3-methyl-sulfolane-assimilating bacterium isolated from soil. Int J Syst Evol Microbiol 59:536–539

    CAS  PubMed  Google Scholar 

  • Mazhani LM (1995) Country report to the FAO international technical conference on plant genetic resources

    Google Scholar 

  • Merabet C, Martens M, Mahdhi M, Zakhia F, Sy A, Coopman R, Bekki A, Mars M, Willems A, De Lajudie P (2010) Multilocus sequence analysis of root nodule isolates from Lotus arabicus (Senegal), Lotus creticus, Argyrolobium uniflorum and Medicago sativa (Tunisia) and description of Ensifer numidicus sp. nov. and Ensifer garamanticus sp. nov. Int J Syst Evol Microbiol 60:664–674

    CAS  PubMed  Google Scholar 

  • Moreira FMS, Cruz L, De Faria SM, Marsh T, Martínez-Romero E, Pedrosa FO, Pitard RM, Young JPW (2006) Azorhizobium doebereinerae sp. nov., microsymbiont of Sesbania virgata (Caz.). Pers Syst Appl Microbiol 29:197–206

    CAS  Google Scholar 

  • Moschetti G, Peluso Al, Protopapa A, Anastasio M, Pepe O, Defez R (2004) Use of nodulation pattern, stress tolerance, nodC gene amplification, RAPD-PCR and RFLP-16S rDNA analysis to discriminate genotypes of Rhizobium leguminosarum biovar viciae. Syst Appl Microbiol 28:619–631

    Google Scholar 

  • Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the β-subclass of proteobacteria. Nature 411:948–950

    CAS  PubMed  Google Scholar 

  • Mpepereki S, Javaheri F, Giller KE (2000) Soyabeans and sustainable agriculture: promiscuous soyabeans in Southern Africa. Field Crops Res 65:137–149

    Google Scholar 

  • Naab JB, Chimphango SMB, Dakora FD (2009) N2 fixation in cowpea plants grown in farmers’ fields in the upper west region of Ghana, measured using 15N natural abundance. Symbiosis 48:37–46

    CAS  Google Scholar 

  • Nandasena KG, O’hara GW, Tiwari RP, Willems A, Howieson JG (2009) Mesorhizobium australiense sp. nov., and Mesorhizobium opportunistum sp. nov., isolated from isolated from Biserrula pelecinus L. in Australia. Int J Syst Evol Microbiol 59:2171–2175

    Google Scholar 

  • Ngom A, Nakagana Y, Sawada H, Tsukahara J, Wakabayashi S, Lichiumi T (2004) A novel symbiotic nitrogen-fixing member of Ochrobactrum clade isolated from root nodules of Acacia mangium. J Gen Appl Microbiol 50:17–27

    CAS  PubMed  Google Scholar 

  • Nick G, De Lajudie P, Eardly BD, Suomalainen S, Paulin L, Zhang X, Gillis M Lindström K (1999) Sinorhizobium arboris sp. nov., and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. Int J Syst Bacteriol 49:1359–1368

    CAS  PubMed  Google Scholar 

  • Normand P, Ponsonnet C, Nesme X, Neyra M, Simonet P (1996) ITS analysis of prokaryotes. In: Akkermans ADL, van Elsas JD, de Bruijn FJ (eds) Molecular microbial ecology manual. Kluwer, Dordrecht, pp 1–12

    Google Scholar 

  • Nour SM, Fernandez MP, Normand P, Cleyet-Marel JC (1994) Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Bacteriol 44:511–522

    CAS  PubMed  Google Scholar 

  • Nour SM, Cleyet-Marel JC, Normand P, Fernandez M (1995) Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. Int J Syst Bacteriol 45:640–648

    CAS  PubMed  Google Scholar 

  • Nyemba RC, Dakora FD (2010) Evaluating N2 fixation by food grain legumes in farmers’ fields in three agro-ecological zones of Zambia, using 15N natural abundance. Biol Fertilty Soil 46:461–470

    Google Scholar 

  • Odee DW, Sutherland JM, Makatian ETi, McInroy SG, Sprent JI (1997) Phenotypic characteristics and composition of rhizobia associated with woody legumes growing in diverse Kenyan conditions. Plant Soil 188:75–85

    Google Scholar 

  • Ogasawara M, Suzuki T, Mutoh I, Annapurna K, Arora NK, Nishimura Y, Maheshwari DK (2003) Sinorhizobium indiaense sp. nov., and Sinorhizobium abri sp. nov., isolated from tropical legumes, Sesbania rostrata and Abrus precatorius, respectively. Symbiosis 34:53–68

    Google Scholar 

  • Ophel K, Kerr A (1990) Agrobacterium vitis sp. nov., for strains of Agrobacterium biovar 3 from grapevines. Int J Syst Evol Microbiol 40:236–241

    CAS  Google Scholar 

  • Palaniappan P, Chauhan PS, Saravanan VS, Anandham R, Sa T (2010) Isolation and characterization of plant growth promoting endophytic bacterial isolates from root nodule of Lespedeza sp. Biol Fertility Soil 46(8):807–816

    Google Scholar 

  • Panday D, Schumann P, Das SK (2011) Rhizobium pusense sp. nov., isolated from the rhizosphere of chickpea (Cicer arietinum L.). Int J Syst Evol Microbiol 61:2632–2639

    PubMed  Google Scholar 

  • Peng G, Yuan Q, Li H, Zhang W, Tan Z (2008) Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta. Int J Syst Evol Microbiol 58:2158–2163

    CAS  PubMed  Google Scholar 

  • Petti CA, Polage CR, Schreckenberger P (2005) The role of 16S tRNA gene sequencing in identification of microorganisms misidentified by conventional methods. J Clin Microbiol 43:6123–6125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puławska J, Willems A, Sobiczewski P (2012) Rhizobium skierniewicense sp. nov., isolated from tumours on chrysanthemum and cherry plum. Int J Syst Evol Microbiol 62:895–899

    PubMed  Google Scholar 

  • Pule-Meulenberg F, Dakora FD (2010) Assessing the symbiotic dependency of grain and tree legumes on N2 fixation for their N nutrition in five agro-ecological zones of Botswana. Symbiosis 48:68–77

    Google Scholar 

  • Pule-Meulenberg F, Belane A, Krasova-Wade T, Dakora FD (2010) Symbiotic functioning and bradyrhizobial biodiversity of cowpea (Vigna unguiculata L. Walp.) in Africa. BMC Microbiol 10:89

    PubMed  PubMed Central  Google Scholar 

  • Pule-Meulenberg F, Gyogluu C, Naab JB, Dakora FD (2011) Symbiotic N nutrition, bradyrhizobial biodiversity and photosynthetic functioning of six inoculated promiscuous-nodulating soybean genotypes. J Plant Physiol 168:540–548

    CAS  PubMed  Google Scholar 

  • Quan ZX, Bae HS, Baek JH, Chen WF, Im WT, Lee ST (2005) Rhizobium daejeonense sp. nov., isolated from a cyanide treatment bioreactor. Int J Syst Evol Microbiol 55:2543–2549

    CAS  PubMed  Google Scholar 

  • Ramana CV, Parag B, Girija KR, Ram BR, Venkata Ramana V, Sasikala C (2013) Rhizobium subbaraonis sp. nov., an endolithic bacterium isolated from beach sand. Int J Syst Evol Microbiol 63:581–585

    CAS  PubMed  Google Scholar 

  • Ramírez-Bahena MH, García-Fraile P, Peix A, Valverde A, Rivas R, Igual JM, Mateos PF, Martinez-Molina E, Velázquez E (2008) Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst Evol Microbiol 58(11):2484–2490

    PubMed  Google Scholar 

  • Ramírez-Bahena MH, Peix A, Rivas R, Camacho M, Rodríguez-Navarro DN, Mateos PF, Martínez-Molina E, Willems A, Velázquez E (2009) Bradyrhizobium pachyrhizi sp. nov., and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus. Int J Syst Evol Microbiol 59:1929–1934

    PubMed  Google Scholar 

  • Ramírez-Bahena MH, Hernández M, Peix A, Velázquez E, León-Barrios M (2012) Mesorhizobial strains nodulating Anagyris latifolia and Lotus berthelotii in Tamadaya ravine (Tenerife, Canary Islands) are two symbiovars of the same species, Mesorhizobium tamadayense sp. nov. Syst Appl Microbiol 35:334–341

    PubMed  Google Scholar 

  • Ren DW, Chen WF, Sui XH, Wang ET, Chen WX (2010) Rhizobium vignae sp. nov., a symbiotic bacterium isolated from multiple legume species grown in China. Int J Syst Evol Microbiol 61:580−556

    Google Scholar 

  • Ribeiro RA, Rogel MA, López-López A, Ormeño-Orrillo E, Barcellos FG, Martínez J, Thompson FL, Martínez-Romero E and Hungria M (2012) Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov. Int J Syst Evol Microbiol 62:1179–1184

    Google Scholar 

  • Rincón-Rosales R, Villalobos-Escobedo JM, Rogel MA, Martinez J, Ormeño-Orrillo E, Martínez-Romero E (2013) Rhizobium calliandrae sp. nov., Rhizobium mayense sp. nov., and Rhizobium jaguaris sp. nov., rhizobial species nodulating the medicinal legume Calliandra grandiflora. Int J Syst Evol Microbiol 63:3423–3429

    PubMed  Google Scholar 

  • Rivas RR, Velazquez E, Willems A, Vizcaino N, Subba-Rao NS, Mateos PF, Gillis M, Dazzo FB, Martinez-Molina E (2002) New species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (l.f.) Druce. Appl Environ Microbiol 68:5217–5222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas R, Willems A, Subba-Rao NS, Mateos PF, Dazzo FB, Martínez-Molina E, Gillis M, Velázquez E (2003) Description of Devosia neptuniae sp. nov., that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst Appl Microbiol 26:47–53

    CAS  PubMed  Google Scholar 

  • Rivas R, Willems A, Palomo JL, García-Benavides P, Mateos PF, Martínez-Molina E, Gillis M, Velázquez E (2004) Description of Bradyrhizobium betae sp. nov., isolated from roots of Beta vulgaris affected by tumor-like deformations. Int J Syst Evol Microbiol 54:1271–1275

    CAS  PubMed  Google Scholar 

  • Rivas R, Laranjo M, Mateos PF, Oliveira S, Martinez-Molina E, Velazquez E (2007) Strains of Mesorhizobium amorphae and Mesorhizobium tianshanense, carrying symbiotic genes of common chickpea endosymbiotic species, constitute a novel biovar (ciceri) capable of nodulating Cicer arietinum. Lett Appl Microbiol 44:412–418

    CAS  PubMed  Google Scholar 

  • Rome S, Fernandez MP, Brunel B, Normand P, Cleyet-Marel JC (1996) Sinorhizobium medicae sp. nov., isolated from annual Medicago sp. Int J Syst Bacteriol 46:972–980

    CAS  PubMed  Google Scholar 

  • Sahin N, Işik K, Tamer AU, Goodfellow M (2000) Taxonomic position of “Pseudomonas oxalaticus” strain ox14 T (DSM 1105 T) (Khambata and Bhat 1953) and its description in the genus Ralstonia as Ralstonia oxalatica comb. nov. Syst Appl Microbiol 23:206–209

    CAS  PubMed  Google Scholar 

  • Sato Y, Nishihara H, Yoshida M, Watanabe M, Rondal JD, Rogelio N, Concepcion RN, Ohta H (2006) Cupriavidus pinatubonensis sp. nov., and Cupriavidus laharis sp. nov., novel hydrogen-oxidizing, facultatively chemolithotrophic bacteria isolated from volcanic mudflow deposits from Mt. Pinatubo in the Philippines. Int J Syst Evol Microbiol 56:973–978

    CAS  PubMed  Google Scholar 

  • Scholla MH, Elkan GH (1984) Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybeans. Int J Syst Evol Microbiol 34:484–486

    Google Scholar 

  • Segovia L, Young JPW, Martínez-Romero E (1993) Re-classification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol 43:374–377

    CAS  PubMed  Google Scholar 

  • Selvakumar G, Saha S, Kundu S (2007) Inhibitory activity of pine needle tannin extracts on some agriculturally resourceful microbes. Ind J Microbiol 47(3):267–270

    CAS  Google Scholar 

  • Sheu SY, Chou JH, Bontemps C, Elliott GN, Gross E, James EK, Sprent JI, Young JP, Chen WM (2012) Burkholderia symbiotica sp. nov., isolated from root nodules of Mimosa sp. native to north-east Brazil. Int J Syst Evol Microbiol 62:2272–2278

    CAS  PubMed  Google Scholar 

  • Singleton PW, Tavares JW (1986) Inoculation response of legumes in relation to the number and effectiveness of indigenous Rhizobium populations. Appl Environ Microbiol 51:1013–1018

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420

    Google Scholar 

  • Smith EF, Townsend CO (1907) A plant tumor of bacterial group origin. Science 25:671–673

    CAS  PubMed  Google Scholar 

  • Sprent JI (2001) Nodulation in legumes. Royal Botanical Gardens, Kew

    Google Scholar 

  • Sprent JI (2009) Nodulation in legumes: a global perspective. Blackwell, West Sussex

    Google Scholar 

  • Squartini A, Struffi P, Döring H, Selenska-Pobell S, Tola E, Giacomini A, Vendramin E, Velázquez E, Mateos PF, Martínez-Molina E, Dazzo FB, Casella S, Nuti MP (2002) Rhizobium sullae sp. nov., (formerly ‘Rhizobium hedysari’), the root-nodule microsymbiont of Hedysarum coronarium L. Int J Syst Evol Microbiol 52:1267–1276

    CAS  PubMed  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44(4):846–849

    CAS  Google Scholar 

  • Steenkamp ET, Stepkowski T, Przymusiak A, Botha WJ, Law IJ (2008) Cowpea and peanut in southern Africa are nodulated by diverse Bradyrhizobium strains harbouring genes that belong to the large pantropical clade common in Africa. Mol Phylogen Evol 48:1131–1144

    CAS  Google Scholar 

  • Sy A, Giraud E, Jourand P, Garcia N, Willems A, De Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sylla SN, Samba RT, Neyra M, Ndoye I, Giraud E, Willems A, de Lajudie P, Dreyfus B (2002) Phenotypic and genotypic diversity of rhizobia nodulating Pterocarpus erinaceus and P. lucens in Senegal. Syst Appl Microbiol 25:572–583

    CAS  PubMed  Google Scholar 

  • Tan ZY, Kan FL, Peng GX, Wang ET, Reinholdt-Hurek B, Chen WX (2001) Rhizobium yanglingense sp. nov., isolated from arid and semi-arid regions in China. Int J Syst Evol Microbiol 51:909–914

    CAS  PubMed  Google Scholar 

  • Thies JE, Bohlool B, Singleton PW (1991) Subgroups of the Cowpea miscellany: symbiotic specificity within Bradyrhizobium sp. for Vigna unguiculata, Phaseolus lunatus, Arachis hypogaea, and Macroptilium atropurpureum. Appl Environ Microbiol 57:1540–1545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian CF, Wang ET, Wu LJ, Han TX, Chen WF, Gu CT, Gu JG, Chen WX (2008) Rhizobium fabae sp. nov., a bacterium that nodulates Vicia faba. Int J Syst Evol Microbiol 58:2871–2875

    CAS  PubMed  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Shekhar Nautiya C, Mittal S, Triphathi AK and Johr BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL (2002). Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum) Appl Environ Microbiol 68:2161–2171

    Google Scholar 

  • Toledo I, Lloret L, Martinez-Romero E (2003) Sinorhizobium americanum sp. nov., a new Sinorhziobium species nodulating native Acacia sp. in Mexico. Syst Appl Microbiol 26:54–64

    CAS  PubMed  Google Scholar 

  • Turdahon M, Osman G, Hamdun M, Yusuf K, Abdurehim Z, Abaydulla G, Abdukerim M, Fang C, Rahman E (2012) Rhizobium tarimense sp. nov., isolated from soil in the ancient Khiyik river of Xinjiang, China. Int J Syst Evol Microbiol 63:2424–2429

    PubMed  Google Scholar 

  • Valverde A, Velázquez E, Gutiérrez C, Cervantes E, Ventosa A, Igual JM (2003) Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 53:1979–1983

    CAS  PubMed  Google Scholar 

  • Valverde A, Velázquez E, Fernández-Santos F, Vizcaíno F, Rivas R, Mateos PF, Martínez-Molina E, Willems A (2005) Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 55:1985–1989

    CAS  PubMed  Google Scholar 

  • Valverde A, Igual JM, Peix A, Cervantes E, Velázquez E (2006) Rhizobium lusitanum sp. nov., a bacterium that nodulates Phaseolus vulgaris. Int J Syst Evol Microbiol 56:2631–2637

    CAS  PubMed  Google Scholar 

  • Van Berkum P, Eardly BD (1998) Molecular evolutionary systematics of the Rhizobiaceae. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae. Springer, Netherlands, pp 1–24

    Google Scholar 

  • Van Berkum P, Eardly BD (2002) The aquatic budding bacterium Blastobacter denitrificans is a nitrogen fixing symbiont of Aechynomene indica. Appl Environ Microbiol 68:1132–1136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Berkum P, Beyene D, Bao G, Campbell TA, Eardly BD (1998) Rhizobium mongolense sp. nov., is one of three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica [(L.) Ledebour]. Int J Syst Bacteriol 48(1):13–22

    CAS  PubMed  Google Scholar 

  • Vance CP (1996) Enhaced agricultural sustainability through biological nitrogen fixation. In: Legock A, Bothe H, Purhler A (eds) Biological nitrogen fixation for ecology and sustainable agriculture, vol 39. Springer, Berlin, pp 179–185

    Google Scholar 

  • Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289

    PubMed  Google Scholar 

  • Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Mol Biol Rev 60:407–438

    CAS  Google Scholar 

  • Vandamme P, Goris J, Coenye T, Hoste B, Janssens D, Kersters K, De Vos P, Falsen E (1999) Assignment of Centers for Disease Control group IVc-2 to the genus Ralstonia as Ralstonia paucula sp. nov. Int J Syst Evol Microbiol 49:663–669

    Google Scholar 

  • Vandamme P, Goris J, Chen WM, De Vos P, Willems A (2002) Burkholderia tuberum sp. nov., and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 25:507–512

    PubMed  Google Scholar 

  • Vavilov NI (1926) Studies on the origin of cultivated plants. Bull Appl Bot 16:2

    Google Scholar 

  • Vaz-Moreira I, Faria C, Lopes AR, Svensson LA, Moore ER, Nunes OC, Manaia CM (2010) Shinella fusca sp. nov., isolated from domestic waste compost. Int J Syst Evol Microbiol 60:144–148

    CAS  PubMed  Google Scholar 

  • Velázquez E, Igual JM, Willems A, Fernández MP, Muñoz E, Mateos PF, Abril A, Toro N, Normand P, Cervantes E, Gillis M, Martinez-Molina E (2001) Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int J Syst Evol Microbiol 51(3):1011–1021

    PubMed  Google Scholar 

  • Vidal C, Chantreuil C, Berge O, Mauré L, Escarré J, Béna G, Brunel B, Cleyet-Marel JC (2009) Mesorhizobium metallidurans sp. nov., a metal-resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France. Int J Syst Evol Microbiol 59:850–855

    CAS  PubMed  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root nodule bacteria. Blackwell ,Oxford

    Google Scholar 

  • Vinuesa P, León-Barrios M, Silva C, Willems A, Jarabo-Lorenzo A, Pérez-Galdona R, Werner D, Martínez-Romero E (2005) Bradyrhizobium canariense sp. nov., an acid tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55:569–575

    CAS  PubMed  Google Scholar 

  • Wan ET, Tan ZY, Willems A, Fernandez-Lopez M, Reinhold-Hurek B, Martinez-Romer E (2002) Sinorhizobium morelense sp. nov., a Leucena leucocephala-associated bacterium that is highly resistant to multiple antibiotics. Int J Syst Evol Microbiol 52:1687–1693

    Google Scholar 

  • Wang ET, Van Berkum P, Beyene D, Sui XH, Dorado O, Chen WX, Martínez-Romero E (1998) Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae. Int J Syst Bacteriol 48:687–699

    CAS  PubMed  Google Scholar 

  • Wang ET, Van Berkum P, Sui XH, Beyene D, Chen WX, Martínez-Romero E (1999) Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49:51–65

    PubMed  Google Scholar 

  • Wang FQ, Wang ET, Liu J, Chen Q, Sui XH, Chen WF, Chen WX (2007) Mesorhizobium albiziae sp. nov., a novel bacterium that nodulates Albizia kalkora in a subtropical region of China. Int J Syst Evol Microbiol 57(6):1192–1199

    CAS  PubMed  Google Scholar 

  • Wang YC, Wang F, Hou BC, Wang ET, Chen WF, Sui XH, Chen WX, Li Y, Zhang YB. (2013a) Proposal of Ensifer psoraleae sp. nov., Ensifer sesbaniae sp. nov., Ensifer morelensecomb. nov. and Ensifer americanum comb. nov. Syst Appl Microbiol 36:467–473

    Google Scholar 

  • Wang R, Chang YL, Zheng WT, Zhang D, Zhang XX, Sui XH, Wang ET, Hu JQ, Zhang LY, Chen WX (2013b) Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Syst Appl Microbiol 36(2):101–105

    PubMed  Google Scholar 

  • Wei GH, Wang ET, Tan ZY, Zhu ME, Chen WX (2002) Rhizobium indigoferae sp. nov., and Sinorhizobium kummerowiae sp. nov., respectively isolated from Indigofera sp. and Kummerowia stipulaceae. Int J Syst Evol Microbiol 52:2231–2239

    CAS  PubMed  Google Scholar 

  • Wei GH, Tan ZY, Zhu ME, Wang ET, Han SZ, Chen WX (2003) Characterization of rhizobia isolated from legume species within the genera Astragalus and Lespedeza grown in the Loess Plateau of China and description of Rhizobium loessense sp. nov. Int J Syst Evol Microbiol 53:1575–1583

    CAS  PubMed  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res 18:6531–6535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willems A, Fernández-López M, Muñoz E, Goris J, Martínez-Romero E, Toro N, Gillis M (2003) Description of new Ensifer strains from nodules and proposal to transfer Ensifer adhaerens Cassida 1982 to Sinorhizobium as Sinorhizobium adhaerens comb. nov. Request for an opinion. Int J Syst Evol Microbiol 53:1207–1217

    CAS  PubMed  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbial Rev 51:221–271

    CAS  Google Scholar 

  • Xu LM, Ge C, Cui Z, Li J, Fan H (1995) Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int J Syst Bacteriol 45:706–711

    CAS  PubMed  Google Scholar 

  • Xu L, Zhang Y, Deng ZS, Zhao L, Wei XL, Wei GH (2012) Rhizobium qilianshanense sp. nov., a novel species isolated from root nodule of Oxytropis ochrocephala Bunge in China. Antonie Van Leeuwenhoek 103:559–565

    PubMed  Google Scholar 

  • Yakubu H, Kwari JD, Ngala AL (2010) N2 fixation by grain legume varieties as affected by Rhizobia inoculation in the sandy loam soil of Sudano-Sahelian Zone of north eastern Nigeria. Niger J Basic Appl Sci 18:229–236

    Google Scholar 

  • Yan AM, Wang ET, Kan FL, Tan ZY, Sui XH, Reinhold-Hurek B, Chen WX (2000) Sinorhizobium meliloti associated with Medicago sativa and Melilotus sp. in arid saline soils in Xinjiang, China. Int J Syst Evol Microbiol 50:1887–1891

    CAS  PubMed  Google Scholar 

  • Yao ZY, Kan FL, Wang ET, Wei GH, Chen WX (2002) Characterization of rhizobia that nodulate legume species within the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol 52:2219–2230

    CAS  PubMed  Google Scholar 

  • Yates RJ, Howieson JG, Reeve WG, Nandasena KG, Law IJ, Brau L, Ardley JK, Nistelberger HM, Real D, O’hara GW (2007) Lotononis angolensis forms nitrogen fixing lupinoid nodules with phylogenetically unique, fast-growing, pink-pigmented bacteria, which do not nodulate L. bainesii or L listi. Soil Biol Biochem 39:1680–1688

    CAS  Google Scholar 

  • Yoon HH, Kang SJ, Yi HS, Oh TK, Ryu CM (2010) Rhizobium soli sp. nov., isolated from soil. Int J Syst Evol Microbiol 60:1387–1393

    CAS  PubMed  Google Scholar 

  • Young JM (2003) The genus name Ensifer Casida 1982 takes priority over Sinorhizobium Chen et al. 1988, and Sinorhizobium morelense Wang et al. 2002 is a later synonym of Ensifer adhaerens Casida 1982. Is the combination ‘Sinorhizobium adhaerens’ (Casida 1982) Willems et al. 2003 legitimate? Request for an opinion. Int J Syst Evol Microbiol 53:2107–2110

    CAS  PubMed  Google Scholar 

  • Young JM, Huaka KE (1996) Diversity and phylogeny of rhizobia. New Phytologist 133:87–94

    Google Scholar 

  • Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103

    Google Scholar 

  • Zhang GX, Ren SZ, Xu MY, Zeng GQ, Luo HD, Chen JL, Tan ZY, Sun GP (2011) Rhizobium borbori sp. nov., aniline-degrading bacteria isolated from activated sludge. Int J Syst Evol Microbiol 61:816–822

    CAS  PubMed  Google Scholar 

  • Zhang RJ, Hou BC, Wang ET, Li YJ, Zhang XX, Chen WX (2012a) Rhizobium tubonense sp. nov., a symbiotic bacterium isolated from root nodules of Oxytropis glabra grown in Tibet, China. Int J Syst Evol Microbiol 62:2737–2742

    CAS  Google Scholar 

  • Zhang JJ, Liu TY, Chen WF, Wang ET, Sui XH, Zhang XX, Li Y, Li Y, Chen WX (2012b) Mesorhizobium muleiense sp. nov., nodulating with Cicer arietinum L. in Xinjiang, China. Int J Syst Evol Microbiol 62:2737–2742

    CAS  Google Scholar 

  • Zheng WT, Li YJ, Wang R, Sui XH, Zhang XX, Zhang JJ, Wang ET, Chen WX (2012) Mesorhizobium qingshengii sp. nov., isolated from effective nodules of Astragalus sinicus grown in the Southeast of China. Int J Syst Evol Microbiol 63:2002–2007

    PubMed  Google Scholar 

  • Zhou PF, Chen WM, Wei GH (2010) Mesorhizobium robiniae sp. nov., a novel species isolated from root nodule of Robinia pseudoacacia in China. Int J Syst Evol Microbiol 60:2552–2556

    CAS  PubMed  Google Scholar 

  • Zhou S, Li Q, Jiang H, Lindström K, Zhang X (2013) Mesorhizobium sangaii sp. nov., isolated from the root nodules of Astragalus luteolus and Astragalus ernestii. Int J Syst Evol Microbiol 63:2794–2799

    CAS  PubMed  Google Scholar 

  • Zurdo-Piñeiro JL, Rivas R, Trujillo ME, Vizcaíno N, Carrasco JA, Chamber M, Palomares A, Mateos PF, Martínez-Molina, E, Velázquez E (2007) Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 57:784–788

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flora Pule-Meulenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pule-Meulenberg, F. (2014). Root-Nodule Bacteria of Legumes Growing in Semi-Arid African Soils and Other Areas of the World. In: Maheshwari, D. (eds) Bacterial Diversity in Sustainable Agriculture. Sustainable Development and Biodiversity, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-05936-5_4

Download citation

Publish with us

Policies and ethics