Skip to main content

Diversity of Plant Associated Actinobacteria

  • Chapter
  • First Online:
Bacterial Diversity in Sustainable Agriculture

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 1))

Abstract

The phylum Actinobacteria encompasses Gram-positive bacteria with a high DNA G+C. In soils, they present multiple lifestyles: rhizosphere saprophytes, endophytes, facultative symbionts and obligate phytopathogens. They play either beneficial or adverse effects towards plants. Numerous studies focused on their taxonomy and preservation. Also, adequate strategies were developed to enable their isolation. Phenotypically, the Actinobacteria is one of the most diverse phyla within bacteria. Their presence was once monitored by classical culture dependent techniques and phenetic characterization. Development of culture independent methods including chemotaxonomic and genomic approaches such as 16S rRNA gene analysis allowed to detect the so called unculturable bacteria. Major works on their diversity combine culture dependant and independant techniques. This chapter focuses on the phenetic and genetic diversity of Actinobacteria in plant-soil systems. It begins with some knowledge of their biology and their taxonomy, followed by a brief overview of the methods that have facilitated advances in the understanding of their diversity. It also discusses diversity of ecologically important plant associated Actinobacteria (rhizosphere and phyllosphere colonizers, endophytes, symbionts and phytopathogens).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akimov VN, Dobritsa SV (1992) Grouping of Frankia strains on the basis of DNA relatedness. Syst Appl Microbiol 15:372–379

    CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Bach HJ, Jessen I, Schloter M, Munch JC (2003) A TaqMan-PCR protocol for quantification and differentiation of the phytopathogenic Clavibacter michiganensis subspecies. J Microbiol Methods 52:85–91

    CAS  PubMed  Google Scholar 

  • Baker DD (1987) Relationships among pure-cultured strains of Frankia based on host specificity. Physiol Plant 70:245–248

    Google Scholar 

  • Baker DD (1988) Opportunities for autoecological studies of Frankia, a symbiotic actinomycetes. In: Okami Y, Beppu T, Ogawara H (eds) Biology of actinomycetes 88. Scientific Societies Press, Tokyo, pp 271–276

    Google Scholar 

  • Baker D (1990) Methods for the isolation, culture and characterization of the Frankiaceae: soil actinomycetes and symbionts of actinorhizal plants. In: Labeda DP (ed) Isolation of biotechnological organisms from nature. DP McGraw-Hill, New York, pp 213–236

    Google Scholar 

  • Baker D, O’Keefe D (1984) A modified sucrose fractionation procedure for the isolation of Frankiae from actinorhizal root nodules and soil samples. Plant Soil 78:23–28

    Google Scholar 

  • Bassi CA, Benson DR (2007) Growth characteristics of the slowgrowing actinobacterium Frankia sp. strain CcI3 on solid media. Physiol Plant 130:391–399

    CAS  Google Scholar 

  • Baysal Ö, Mercati F, Ikten H, Yildiz RÇ, Carimi F, Aysan Y, Teixeira da Silva JA (2010) Clavibacter michiganensis subsp. michiganensis: tracking strains using their genetic differentiations by ISSR markers in Southern Turkey. Physiol Mol Plant Pathol 75:113–119

    Google Scholar 

  • Behrendt U, Ulrich A, Schumann P (2001) Description of Microbacterium foliorum sp. nov. and Microbacterium phyllosphaerae sp. nov., isolated from the phyllosphere of grasses and the surface litter after mulching the sward, and reclassification of Aureobacterium resistens (Funke et al. (1998) as Microbacterium resistens comb. nov. Int J Syst Evol Microbiol 51:1267–1276

    CAS  PubMed  Google Scholar 

  • Behrendt U, Ulrich A, Schumann P, Naumann D, Suzuki K (2002) Diversity of grass-associated Microbacteriaceae isolated from the phyllosphere and litter layer after mulching the sward; a polyphasic characterization of Subtercola pratensis sp nov., Curtobacterium herbarum sp nov., and Plantibacter flavus gen nov., sp nov. Int J Syst Evol Microbiol 52:1441–1454

    CAS  PubMed  Google Scholar 

  • Behrendt U, Schumann P, Ulrich A (2008) Agrococcus versicolor sp nov., an actinobacterium associated with the phyllosphere of potato plants. Int J Syst Evol Microbiol 58:2833–2838

    CAS  PubMed  Google Scholar 

  • Behrendt U, Schumann P, Hamada M, Suzuki KI, Spröer C, Ulrich A (2011) Reclassification of Leifsonia ginsengi (Qiu et al. (2007) as Herbiconiux ginsengi gen. nov., comb. nov., and description of Herbiconiux solani sp. nov., an actinobacterium associated with the phyllosphere of Solanum tuberosum L. Int J Syst Evol Microbiol 61:1039–1047

    CAS  PubMed  Google Scholar 

  • Benson DR, Clawson ML (2000) Evolution of the actinorhizal plants symbiosis. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for analysis of a biological process. Horizon Scientific Press, Madison-Wisconsin, pp 207–224

    Google Scholar 

  • Benson DR, Stephens DW, Clawson ML, Silvester WB (1996) Amplification of 16S rRNA genes from Frankia strains in root nodules of Ceanothus griseus, Coriaria arborea, Coriaria plumosa, Discaria toumatou, and Purshia tridentate. Appl Environ Microbiol 62:2904–2909

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bentley SD, Corton C, Brown SE, Barron A, Clark L, Doggett J, Harris B, Ormond D, Quail MA, May G, Francis D, Knudson D, Parkhill J, Ishimaru CA (2008) Genome of the actinomycetes plant pathogen Clavibacter michiganensis subsp. sepedonicus suggests recent niche adaptation. J Bacteriol 190:2150–2160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    CAS  PubMed  Google Scholar 

  • Bernèche-D’Amours A, Ghinet MG, Beaudin J, Brzezinski R, Roy S (2011) Sequence analysis of rpoB and rpoD gene fragments reveals the phylogenetic diversity of actinobacteria of genus Frankia. Can J Microbiol 57:244–249

    PubMed  Google Scholar 

  • Bignell DRD, Seipke RF, Huguet-Tapia JC, Chambers AH, Parry RJ, Loria R (2010) Streptomyces scabies 87-22 contains a coronafacic acid-like biosynthetic cluster that contributes to plant microbe interactions. Mol Plant-Microbe Interact 23:161–175

    CAS  PubMed  Google Scholar 

  • Bouchek-Mechiche K, Guérin C, Jouan B, Gardan L (1998) Streptomyces species isolated from potato scabs in France: numerical analysis of ‘Biotype 100’ carbon sources assimilation data. Res Microbiol 149:653–663

    CAS  PubMed  Google Scholar 

  • Bouchek-Mechiche K, Gardan L, Normand P, Jouan B (2000) DNA relatedness among strains of Streptomyces pathogenic to potato in France: description of three new species, S. europaeiscabiei sp. nov., and S. stelliscabiei sp. nov., associated with common scab, and S. reticuliscabiei sp. nov., associated with netted scab. Int J Syst Evol Microbiol 50:91–99

    CAS  PubMed  Google Scholar 

  • Bouchek-Mechiche K, Gardan L, Andrivon D, Normand P (2006) Streptomyces turgidiscabies and Streptomyces reticuliscabiei: one genomic species, two pathogenic groups. Int J Syst Evol Microbiol 56:2771–2776

    CAS  PubMed  Google Scholar 

  • Bouizgarne B, Lanoot B, Loqman S, Sproer C, Klenk HP, Swings J, Ouhdouch Y (2009) Streptomyces marokkonensis sp. nov., isolated from rhizosphere soil of Argania spinosa. L. Int J Syst Evol Microbiol 59:2857–2863

    CAS  PubMed  Google Scholar 

  • Bramwell PA, Wiener P, Akkermans AD, Wellington EM (1998) Phenotypic, genotypic and pathogenic variation among streptomycetes implicated in common scab disease. Lett Appl Microbiol 27:255–260

    CAS  PubMed  Google Scholar 

  • Breton A, Theilleux J, Sanglier JJ, Viobis G (1989) Organismes producteurs: biologie, taxonomie et écologie. In: Larpent JP, Sanglier JJ (eds) Biotechnologie des Antibiotiques, Masson, Paris, pp 33–70

    Google Scholar 

  • Brunchors J (1886–1888) Über einige Wurzelans chwellungen, besonders diejenigen von Alnus und den Elaeagnaceen. Unters Bot Inst Tübingen 2:150–177

    Google Scholar 

  • Bukhalid RA, Chung SY, Loria R (1998) nec1, a gene conferring a necrogenic phenotype, is conserved in plant-pathogenic Streptomyces species and linked to a transposase pseudogene. Mol Plant-Microbe Interact 11:960–967

    CAS  PubMed  Google Scholar 

  • Bukhalid RA, Takeuchi T, Labeda D, Loria R (2002) Horizontal transfer of the plant virulence gene, nec1, and flanking sequences among genetically distinct Streptomyces strains in the diastatochromogenes cluster. Appl Env Microbiol 68:738–744

    CAS  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    CAS  PubMed  Google Scholar 

  • Cao L, Qiu Z, Dai X, Tan H, Lin Y, Zhou S (2004a) Isolation of endophytic actinomycetes from roots and leaves of banana (Musa acuminate) planta and their activities against Fusarium oxysporum fsp cubense. World J Microbiol Biotech 20:581−504

    Google Scholar 

  • Cao L, Qiu Z, You J, Tan H, Zhou S (2004b) Isolation and characterization of endophytic Streptomyces strains from surface-sterilized tomato (Lycopersicon esculentum) roots. Lett Appl Microbiol 39:425–430

    CAS  Google Scholar 

  • Cao YR, Jiang Y, Wu JY, Xu LH, Jiang CL (2009) Actinopolymorpha alba sp nov., isolated from a rhizosphere soil. Int J Syst Evol Microbiol 59:2200–2203

    CAS  PubMed  Google Scholar 

  • Cao YR, Wang Q, Jin RX, Jiang Y, Lai HX, He WX, Xu LH, Jiang CL (2011) Planosporangium mesophilum sp nov., isolated from rhizosphere soil of Bletilla striata. Int J Syst Evol Microbiol 61:1330–1333

    PubMed  Google Scholar 

  • Carlson RR, Vidaver AK (1982) Taxonomy of Corynebacterium plant pathogens, including a new pathogen of wheat, based on polyacrylamide gel electrophoresis of cellular proteins. Int J Syst Bacteriol 32:315–326

    CAS  Google Scholar 

  • Carro L, Sproer C, Alonso P, Trujillo ME (2012) Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. Syst Appl Microbiol 35:73–80

    PubMed  Google Scholar 

  • Carro L, Pujic P, Trujillo ME, Normand P (2013) Micromonospora is a normal occupant of actinorhizal nodules. J Biosci 38:685–693

    PubMed  Google Scholar 

  • Cavigelli MA, Robertson GP, Klug MJ (1995) Fatty acid methyl ester (FAME) profiles as measures of soil microbial community structure. Plant Soil 170:99–113

    CAS  Google Scholar 

  • Chaia EE, Fontenla S, Vobis G, Wall LG (2006) Infectivity of soilborne Frankia and mycorrhizae in Discaria trinervis along a vegetation gradient in Patagonian soil. J Basic Microbiol 46:263–274

    PubMed  Google Scholar 

  • Chaia EE, Wall LG, Huss-Danell K (2010) Life in soil by the actinorhizal root nodule endophyte Frankia: a review. Symbiosis 51:201–226

    Google Scholar 

  • Chapin FS III, Walker RL, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64:149–175

    Google Scholar 

  • Chen C, Bauske EM, Musson EM, Rodríguez-Kábana R, Kloepper JW (1995) Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biol Control 5:83–91

    Google Scholar 

  • Chen YF, Yin YN, Zhang XM, Guo JH (2007) Curtobacterium flaccumfaciens pv beticola, a new pathovar of pathogens in sugar beet. Plant Dis 91:677–684

    CAS  Google Scholar 

  • Chen HH, Qin S, Li J, Zhang YQ, Xu LH, Jiang CL, Kim CJ, Li WJ (2009a) Pseudonocardia endophytica sp nov., isolated from the pharmaceutical plant Lobelia clavata. Int J Syst Evol Microbiol 59:559–563

    CAS  Google Scholar 

  • Chen HH, Zhao GZ, Park DJ, Zhang YQ, Xu LH, Lee JC, Kim CJ, Li WJ (2009b) Micrococcus endophyticus sp nov., isolated from surface-sterilized Aquilaria sinensis roots. Int J Syst Evol Microbiol 59:1070–1075

    CAS  Google Scholar 

  • Christopher D, Clegg RD, Lovell PJ (2003) The impact of grassland management regime on the community structure of selected bacterial groups in soils. Microbiol Ecol 43:263–270

    Google Scholar 

  • Clark CA, Chen C, Ward-Rainey N, Pettis GS (1998) Diversity within Streptomyces ipomoeae based on inhibitory interactions, rep-PCR, and plasmid profiles. Phytopathology 88:1179–1186

    CAS  PubMed  Google Scholar 

  • Clawson ML, Benson DR (1999) Natural diversity of Frankia strains in actinorhizal root nodules from promiscuous hosts in the family Myricaceae. Appl Environ Microbiol 65:4521–4527

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clawson ML, Bourret A, Benson DR (2004) Assessing the phylogeny of Frankia-actinorhizal plant nitrogen-fixing root nodule symbioses with Frankia 16S rRNA and glutamine synthetase gene sequences. Mol Phylogen Evol 31:131–138

    CAS  Google Scholar 

  • Clegg CD (2006) Impact of cattle grazing and inorganic fertilizer additions to managed grasslands on the micro bial community composition of soils. Appl Soil Ecol 31:73–82

    Google Scholar 

  • Clegg CD, Lovell RDL, Hobbus PJ (2003) The impact of grassland management regime on the community structure of selected bacterial groups in soil. FEMS Microbiol Ecol 43:263–70

    CAS  PubMed  Google Scholar 

  • Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid (DAB). J Appl Bacteriol 48:459–470

    CAS  Google Scholar 

  • Collins MD, Jones D (1983) Reclassification of Corynebacterium flaccumfaciens, Corynebacterium betae, Corynebacteriurn oortii and Corynebacterium poinsettiae in the genus Curtobacterium, as Curtobacterium flaccumfaciens comb nov., J Gen Microbiol 129:3545–3548

    Google Scholar 

  • Collins MD, Jones D, Kroppenstedt RM (1981) Reclassification of Corynebacterium ilicis (Mandel, Guba and Litsky) in the genus Arthrobacter as Arthrobacter ilicis comb nov., Zentralbl Bakteriol Mikrobiol Hyg Abt I Orig C 2:318–323

    Google Scholar 

  • Conn VM, Franco CMM (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L) by terminal restriction fragment length polymorphism (T-RFLP) and sequencing of 16S rRNA clones. Appl Environ Microbiol 70:1787–1794

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coombs JT, Franco CMM (2003a) Isolation and identification of actinobacteria isolated from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608

    CAS  Google Scholar 

  • Coombs JT, Franco CMM (2003b) Visualisation of an endophytic Streptomyces sp in wheat seed. Appl Environ Microbiol 69:4260–4262

    CAS  Google Scholar 

  • Coombs JT, Michelson PP, Franco CMM (2004) Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var tritici in wheat. Biol Control 29:359–366

    Google Scholar 

  • Cournoyer B, Lavire C (1999) Analysis of Frankia evolution radiation using glnII sequences. FEMS Microbiol Lett 117:29–34

    Google Scholar 

  • Crawford DL, Lynch JM, Whipps JM, Ousley MA (1993) Isolation and characterization of actinomycetes antagonists of a fungal root pathogen. App Environ Microbiol 59:3899–3905

    CAS  Google Scholar 

  • Dahllöf I, Baillie H, Kjelleberg S (2000) rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl Environ Microbiol 66:3376–3380

    PubMed Central  PubMed  Google Scholar 

  • Dai YM, He XY, Zhang CG, Zhang ZZ (2004) Characterization of genetic diversity of Frankia strains in nodules of Alnus nepalensis (D Don) from the Hengduan Mountains on the basis of PCR-RFLP analysis of the nifD-nifK IGS Plant Frankia. Soil 267:207–212

    CAS  Google Scholar 

  • Davis M, Gillaspie A, Vidaver A, Harris R (1984) Clavibacter: a new genus containing some phytopathogenic coryneform bacteria, including Clavibacter xyli subsp. xyli sp nov., and Clavibacter xyli subsp. cynodontis subsp. nov., pathogens that cause ratoon stunting disease of sugarcane and Bermudagrass. Int J Syst Bacteriol 34:107–117

    Google Scholar 

  • de Araújo JM, da Silva AC, Azevedo JL (2000) Isolation of endophytic actinomycetes from roots and leaves of maize (Zea mays L.). Braz Arch Bio Technol 43:447–451

    Google Scholar 

  • de Leon L, Rodriguez A, Llop P, Lopez MM, Siverio F (2009) Comparative study of genetic diversity of Clavibacter michiganensis subsp michiganensis isolates from the Canary Islands by RAPD-PCR, BOX-PCR and AFLP. Plant Pathol 58:862–71

    CAS  Google Scholar 

  • de Vasconcellos RLF, Cardoso EJBN (2009) Rhizospheric streptomycetes as potential biocontrol agents of Fusarium and Armillaria pine rot and as PGPR for Pinus taeda. BioControl 54:807–816

    Google Scholar 

  • Dees MW, Somervuo P, Lysøe E, Aittamaa M, Valkonen JPT (2012) Species’ identification and microarray-based comparative genome analysis of Streptomyces species isolated from potato scab lesions in Norway. Mol Plant Pathol 13:174–86

    CAS  PubMed  Google Scholar 

  • Demaree JB, Smith NR (1952) Nocardia vaccinii n sp. causing galls on blueberry plants. Phytopathology 42:249–252

    Google Scholar 

  • DeSantis TZ, Brodie EL, Moberg JP, Zubieta IX, Piceno YM, Andersen GL (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53:371–383

    CAS  PubMed  Google Scholar 

  • Dietz A, Mathews J (1971) Classification of Streptomyces spore surfaces into five groups. Appl Microbiol 21:527–533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dobritsa SV (1998) Grouping of Frankia strains on the basis of susceptibility to antibiotics, pigmentproduction and host specificity. Int J Syst Evol Microbiol 48:1265–1275

    CAS  Google Scholar 

  • Doering-Saad C, Kampfer P, Manulis S, Kritzman G, Schneider J, Zakrzewska-Czerwinska J, Schrempf H, Barash I (1992) Diversity among Streptomyces strains causing potato scab. Appl Environ Microbiol 58:3932–3940

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dolotkeldieva T, Totubaeva N (2006) Biodiversity of Streptomyces of high-mountainous ecosystems of kyrgystan and its biotechnological potential. Antonie Leeuwenhoek 89:325–328

    PubMed  Google Scholar 

  • Döpfer H, Stackebrandt E, Fiedler F (1982) Nucleic acid hybridization studies on Microbacterium, Curtobacterium, Agromyces and related taxa. J Gen Microbiol 128:1697–1708

    PubMed  Google Scholar 

  • Dorofeeva LV, Krausova VI, Evtushenko LI, Tiedje JM (2003) Agromyces albus sp nov., isolated from a plant (Androsace sp). Int J Syst Evol Microbiol 53:1435–1438

    CAS  PubMed  Google Scholar 

  • Dreier J, Bermpohl A, Eichenlaub R (1995) Southern hybridization and PCR for specific detection of phytopathogenic Clavibacter michiganensis subsp. michiganensis. Phytopathology 85:462–68

    CAS  Google Scholar 

  • Dreier J, Meletzus D, Eichenlaub R (1997) Characterization of the plasmid encoded virulence region pat-1 of the phytopathogenic Clavibacter michiganensis subsp. michiganensis. Mol Plant-Microbe Interact 10:195–206

    CAS  PubMed  Google Scholar 

  • Du HJ, Wei YZ, Su J, Liu HY, Ma BP, Guo BL, Zhang YQ, Yu LY (2013) Nocardioides perillae sp. nov., isolated from surface-sterilized roots of Perilla frutescens. Int J Syst Evol Microbiol 63:1068–1072

    CAS  PubMed  Google Scholar 

  • Duangmal K, Thamchaipenet A, Ara I, Matsumoto A, Takahashi Y (2008) Kineococcus gynurae sp nov., isolated from a Thai medicinal plant. Int J Syst Evol Microbiol 58:2439–2442

    CAS  PubMed  Google Scholar 

  • Duangmal K, Mingma R, Thamchaipenet A, Matsumoto A, Takahashi Y (2010) Saccharopolyspora phatthalungensis sp nov., isolated from rhizosphere soil of Hevea brasiliensis. Int J Syst Evol Microbiol 60:1904–1908

    CAS  PubMed  Google Scholar 

  • Duangmal K, Mingma R, Pathom-Aree W, Thamchaipenet A, Inahashi Y, Matsumoto A, Takahashi Y (2011) Amycolatopsis samaneae sp nov., isolated from roots of Samanea saman (Jacq) Merr. Int J Syst Evol Microbiol 61:951–955

    CAS  PubMed  Google Scholar 

  • Duineveld BM, Kowalchuk GA, Keijzer A, van Elsas JD, van Veen JA (2001) Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl Environ Microbiol 67:172–178

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dye DW, Kemp WJ (1977) A taxonomic study of plant pathogenic Corynebacterium species. NZ J Agric Res 20:563–582

    Google Scholar 

  • Eichenlaub R, Gartemann KH (2011) The Clavibacter michiganensis subspecies: molecular investigation of Gram-positive bacterial plant pathogens. Annu Rev Phytopathol 49:445–64

    CAS  PubMed  Google Scholar 

  • Eichenlaub R, Gartemann KH, Burger A (2006) Clavibacter michiganensis, a group of Gram-positive phytopathogenic bacteria. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 385–422

    Google Scholar 

  • El-Shatoury SA, El-Kraly OA, Trujillo ME, El-Kazzaz WM, Gamal El-Din ES, Dewedar A (2013) Generic and functional diversity in endophytic actinomycetes from wild compositae plant species at South Sinai-Egypt. Res Microbiol 164:761–769

    PubMed  Google Scholar 

  • El-Tarabily KA (2003) An endophytic chitinase-producing isolate of Actinoplanes missouriensis, with potential for biological control of root rot of lupin caused by Plectosporium tabacinum. Aust J Bot 51:257–266

    Google Scholar 

  • El-Tarabily KA (2008) Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant Soil 308:161–174

    CAS  Google Scholar 

  • El-Tarabily KA, Sivasithamparam K (2006) Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Bioch 34:1–16

    Google Scholar 

  • El-Tarabily KA, Nassar AH, Sivasithamparam K (2008) Promotion of growth of bean (Phaseolus vulgaris L.) in a calcareous soil by a phosphate-solubilizing, rhizosphere-competent isolate of Micromonospora endolithica. Appl Soil Ecol 39:161–171

    Google Scholar 

  • El-Tarabily KA, Nassar AH, Hardy GESJ, Sivasithamparam K (2009) Plant growth promotion and biological control of Pythium aphanidermatum a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 106:13–26

    CAS  PubMed  Google Scholar 

  • Euzéby JP, Tindall BJ (2001) Nomenclatural type of orders: corrections necessary according to Rules 15 and 21a of the Bacteriological Code (1990 Revision), and designation of appropriatenomenclatural types of classes and subclasses. Request for an opinion. Int J Syst Evol Microbiol 51:725–727

    PubMed  Google Scholar 

  • Evtushenko LI, Akimov VN, Dobritsa SV, Taptykova SD (1989) A new species of Actinomycete, Amycolata alni. Int J Syst Bacteriol 39:72–77

    Google Scholar 

  • Evtushenko LI, Dorofeeva LV, Subbotin SA, Cole JR, Tiedje JM (2000a) Leifsonia poae gen nov., sp nov., isolated from nematode galls on Poa annua, and reclassification of ‘Corynebacterium aquaticum’ Leifson 1962 as Leifsonia aquatica (ex Leifson 1962) gen nov., nom rev, comb nov., and Clavibacter xyli Davis et al. 1984 with two subspecies as Leifsonia xyli (Davis et al 1984) gen nov., comb nov. Int J Syst Evol Microbiol 50:371–380

    CAS  Google Scholar 

  • Evtushenko LI, Taran VN, Akimov VN, Kroppenstedt RM, Tiedje JM, Stackebrandt E (2000b) Nocardiopsis tropica sp nov., Nocardiopsis trehalosi sp nov., nom rev and Nocardiopsis dassonvillei subsp albirubida subsp nov., comb nov. Int J Syst Evol Microbiol 50:73–81

    CAS  Google Scholar 

  • Evtushenko LI, Dorofeeva LV, Dobrovolskaya TG, Streshinskaya GM, Subbotin SA, Tiedje JM (2001) Agreia bicolorata gen. nov., sp. nov., to accommodate actinobacteria isolated from narrow reed grass infected by the nematode Heteroanguina graminophila. Int J Syst Evol Microbiol 51:2073–2079

    CAS  PubMed  Google Scholar 

  • Fang XM, Su J, Wang H, Wei YZ, Zhang T, Zhao LL, Liu HY, Ma BP, Klenk HP, Zhang YQ, Yu LY (2013) Williamsia sterculiae sp. nov., isolated from a chinese medicinal plant. Int J Syst Evol Microbiol 63:4158–4162

    CAS  PubMed  Google Scholar 

  • Faucher E, Savard T, Beaulieu C (1992) Characterization of actinomycetes isolated from common scab lesions of potato tubers. Can J Plant Pathol 14:197–202

    Google Scholar 

  • Faucher E, Otrysko B, Paradis E, Hodge NC, Stall RE, Beaulieu C (1993) Characterisation of Streptomycetes causing russet scab in Quebec. Plant Dis 77:1217–1220

    Google Scholar 

  • Felske A, Engelen B, Nuübel U, Backhaus H (1996) Direct ribosome isolation from soil to extract bacterial rRNA for community analysis. Appl Environ Microbiol 62:4162–4167

    CAS  PubMed Central  PubMed  Google Scholar 

  • Felske A, Rheims H, Wolterink A, Stackebrandt E, Akkerman ADL (1997) Ribosome analysis reveals prominent activity of an uncultured member of the class actinobacteria in grassland soils. Microbiology 143:2983–2989

    CAS  PubMed  Google Scholar 

  • Fernandez MP, Meugnier H, Grimont PAD, Bardin R (1989) Deoxyribonucleic acid relatedness among members of the genus Frankia. Int J Syst Bacteriol 39:424–429

    Google Scholar 

  • Flores-González R, Velasco I, Montes F (2008) Detection and characterization of Streptomyces causing potato common scab in Western Europe. Plant Pathol 57:162–169

    Google Scholar 

  • Franc GD (1999) Persistence and latency of Clavibacter michiganensis subsp. sepedonicus in field-grown seed potatoes. Plant Dis 83:247–250

    Google Scholar 

  • Franco C, Michelsen P, Percy N, Conn V, Listiana E, Moll S, Loria R, Coombs J (2007) actinobacterial endophytes for improved crop performance. Australas Plant Pathol 36:524–531

    Google Scholar 

  • Franken AAJM, Kamminga GC, Snyders W, Van Der Zouwen PS, Birnbaum YE (1993) Detection of Clavibacter michiganensis ssp michiganensis in tomato seeds by immunofluorescence microscopy and dilution plating. Neth J Plant Pathol 99:125–137

    Google Scholar 

  • Fritze H, Pietikäinen J, Pennanen T (2000) Distribution of microbial biomass and phospholipid fatty acids in podzol profiles under coniferous forest. Eur J Soil Sci 51:565–573

    CAS  Google Scholar 

  • Gao M, Wang M, Zhang YC, Zou XL, Xie LQ, Hu HY, Xu J, Gao JL, Sun JG (2013) Microbacterium neimengense sp nov., isolated from the rhizosphere of maize. Int J Sys Evol Microbiol 63:236–240

    CAS  Google Scholar 

  • Garbeva P, Van Overbeek LS, Van Vuurde JWL, Van Elsas JD (2001) Analysis of endophytic bacterial communities of potato by plating and Denaturing Gradient Gel Electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microbial Ecol 41:369–383

    CAS  Google Scholar 

  • Garcia CL, Martínez-Molina E, Trujillo ME (2010) Micromonospora pisi sp nov., isolated from root nodules of Pisum sativum. Int J Syst Evol Microbiol 60:331–337

    PubMed  Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level-sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gartemann K-H, Kirchner O, Engemann J, Grafen I, Eichenlaub R, Burger A (2003) Clavibacter michiganensis subsp michiganensis: first steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium. J Biotechnol 106:179–191

    CAS  PubMed  Google Scholar 

  • Gartemann KH, Abt B, Bekel T, Burger A, Engemann J, Flügel M, Gaigalat L, Goesmann A, Gräfen I, Kalinowsk J, Kaup O, Kirchner O, Krause L, Linke B, McHardy A, Meyer F, Pohle S, Rückert C, Schneiker S, Zellermann E-M, Pühler A, Eichenlaub R, Kaiser O, Bartels D (2008) The genome sequence of the tomato-pathogenic actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382 reveals a large island involved in pathogenicity. J Bacteriol 190:2138–2149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gerber NN, Lechevalier HA (1965) Geosmin, an earthy-smelling substance isolated from actinomycetes. Appl Microbiol 13:935–938

    CAS  PubMed Central  PubMed  Google Scholar 

  • Germida JJ, Siciliano SD, Freitas R, Seib AM (1998) Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol 26:43–50

    CAS  Google Scholar 

  • Ghodhbane-Gtari F, Essoussi I, Chattaoui M, Chouaia B, Jaouani A, Daffonchio D, Boudabous A, Ghodhbane-Gtari M (2010) Isolation and characterization of non-Frankia actinobacteria from root nodules of Alnus glutinosa, Casuarina glauca and Elaeagnus angustifolia. Symbiosis 50:51–57

    CAS  Google Scholar 

  • Giovannoni SJ, Stingl U (2005) Molecular diversity and ecology of microbial plankton. Nature 437:343–348

    CAS  PubMed  Google Scholar 

  • Goethals K, Vereecke D, Jaziri M, Van Montagu M, Holsters M (2001) Leafy gall formation by Rhodococcus fascians. Annu Rev Phytopathol 39:27–52

    CAS  PubMed  Google Scholar 

  • Gomes NCM, Heuer H, Schönfeld J, Costa R, Hagler-Mendonca L, Smalla K (2001) Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 232:167–180

    CAS  Google Scholar 

  • Gontia I, Kavita K, Schmid M, Hartmann A, Jha B (2011) Brachybacterium saurashtrense sp nov., a halotolerant root-associated bacterium with plant growth-promoting potential. Int J Syst Evol Microbiol 61:2799–2804

    CAS  PubMed  Google Scholar 

  • Gonzalez-Franco AC, Robles-Hernandez L, Nunez-Barrios A, Strap JL, Crawford DL (2009) Molecular and cultural analysis of seasonal actinomycetes in soils from Artemisia tridentata habitat. Phyton 78:83–90

    Google Scholar 

  • Goodfellow M (1984) Reclassification of Corynebacterium fascians (Tilford) Dowson in the genus Rhodococcus, as Rhodococcus fascians comb nov. Syst Appl Microbiol 5:225–229

    Google Scholar 

  • Goodfellow M, Minnikin DE (1985) Chemical methods in bacterial systematics. Academic, London, pp 173–199

    Google Scholar 

  • Goodfellow M, Hill IR, Gray TRG (1968) Bacteria in a pine forest soil. In: Gray TRG, Parkinson D (eds) The ecology of soil bacteria. University of Toronto Press, Toronto, pp 500–515

    Google Scholar 

  • Goodfellow M, Stackebrandt E, Koppenstedt M (1988) Chemotaxonomy and actinoomycete Systematics. In: Okami Y, Beppu T, Ogawara H (eds) Biology of actinomycetes 88. Scientific Societies Press, Tokyo, pp 233–238

    Google Scholar 

  • Goyer C, Faucher E, Beaulieu C (1996) Streptomyces caviscabies sp nov., from deep-pitted lesions in potatoes in Québec, Canada. Int J Syst Bacteriol 46:635–639

    Google Scholar 

  • Grayston SJ (2000) Rhizodeposition and its impact on microbial community structure and function in trees. Phyton (Horn, Austria) 40:27–36

    Google Scholar 

  • Grayston SJ, Wang SQ, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    CAS  Google Scholar 

  • Grayston SJ, Campbell CD, Bardgett RD, Mawdsley JL, Clegg CD, Ritz K, Griffiths BS, Rodwell JS, Edwards SJ, Davies WJ, Elston DJ, Millard P (2004) Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Appl Soil Ecol 25:63–84

    Google Scholar 

  • Gross DC, Vidaver AK (1979) Bacteriocins of phytopathogenic Corynebacterium species. Can J Microbiol 25:367–374

    CAS  PubMed  Google Scholar 

  • Groth I, Schütze B, Boettcher T, Pullen CB, Rodriguez C, Leistner E, Goodfellow M (2003) Kitasatospora putterlickiae sp nov., isolated from rhizosphere soil, transfer of Streptomyces kifunensis to the genus Kitasatospora as Kitasatospora kifunensis comb nov., and emended description of Streptomyces aureofaciens Duggar 1948. Int J Syst Evol Microbiol 53:2033–2040

    CAS  PubMed  Google Scholar 

  • Groth I, Rodríguez C, Schütze B, Schmitz P, Leistner E, Goodfellow M (2004) Five novel Kitasatospora species from soil: Kitasatospora arboriphila sp nov., K gansuensis sp nov., K nipponensis sp nov., K paranensis sp nov., and K terrestris sp nov. Int J Syst Evol Microbiol 54:2121–2129

    CAS  PubMed  Google Scholar 

  • Gtari M, Brusetti L, Hassen A, Mora D, Daffoncihio D, Boudabous A (2007) Genetic diversity among Elaeagnus compatible Frankia strains and sympatric related nitrogen-fixing actinobacteria revealed by nifH sequence analysis. Soil Biol Biochem 39:372–377

    CAS  Google Scholar 

  • Gu Q, Luo H, Zheng W, Liu Z, Huang Y (2006) Pseudonocardia oroxyli sp nov., a novel actinomycete isolated from surfacesterilized Oroxylum indicum root. Int J Syst Evol Microbiol 56:2193–2197

    CAS  PubMed  Google Scholar 

  • Gu Q, Zheng W, Huang Y (2007) Glycomyces sambucus sp nov., an endophytic actinomycete isolated from the stem of Sambucus adnata Wall. Int J Syst Evol Microbiol 57:1995–1998

    CAS  PubMed  Google Scholar 

  • Hahn D, Kester R, Starrenburg MJC, Akkermans ADL (1990) Extraction of ribosomal RNA from soil for detection of Frankia with oligonucleotide probes. Arch Microbiol 154:329–335

    CAS  PubMed  Google Scholar 

  • Hahn D, Zepp K, Zeyer J (1997) Whole cell hybridization as a tool to study Frankia populations in root nodules. Physiol Plant 99:696–706

    CAS  Google Scholar 

  • Hahn D, Nickel A, Dawson J (1999) Assessing Frankia populations in plants and soil using molecular methods. FEMS Microbiol Ecol 29:215–227

    CAS  Google Scholar 

  • Hahn D, Mirza B, Benagli C, Vogelc G, Tonolla M (2011) Typing of nitrogen-fixing Frankia strains by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. Syst Appl Microbiol 34:63–68

    CAS  PubMed  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    CAS  Google Scholar 

  • Hamby MK, Crawford DL (2000) The enhancement of plant growth by selected Streptomyces species. Am Soc for Microbiol, 100th General Meeting, Los Angeles, CA. Abstracts: 567

    Google Scholar 

  • Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle MJ, Ouhdouch Y (2008) Screening for rock phosphate solubilizing actinomycetes from moroccan phosphate mines. Appl Soil Ecol 38:12–19

    Google Scholar 

  • Harding MW, Marques LLR, Howard RJ, Olson ME (2007) Biofilms are associated with vascular clogging and seed contamination by Curtobacterium flaccumfaciens pv flaccumfaciens in bean vascular wilt. Can J Plant Pathol 29:209–210

    Google Scholar 

  • Han JH, Kim TS, Joung Y, Kim MN, Shin KS, Bae T, Kim SB (2013) Nocardioides endophyticus sp. nov. and Nocardioides conyzicola sp. nov., isolated from herbaceous plant roots. Int J Sys Evol Microbiol 63:4730–4734

    CAS  Google Scholar 

  • Harris-Baldwin A, Gudmestad NC (1996) Identification of phytopathogenic coryneform bacteria using the Biolog automated microbial identification system. Plant Dis 80:874–878

    Google Scholar 

  • Hasegawa T, Lechevalier MP, Lechevalier HA (1978) A new genus of the Actinomycetales, Actinosynnema gen. nov. Int J Syst Bacteriol 28:304–310

    Google Scholar 

  • Hasegawa S, Meguro A, Nishimura T, Kunoh H (2004) Drought tolerance of tissue-cultured seedlings of mountain laurel (Kalmia latifolia L) induced by an endophytic actinomycete I Enhancement of osmotic pressure in leaf cells. Actinomycetologica 18:43–47

    Google Scholar 

  • Hasegawa S, Meguro A, Shimizu M, Nishimura T, Toyoda K, Shiraishi T, Kunoh H (2008) Two bioassay methods to evaluate root-accelerating activity of Streptomyces sp. MBR52 Metabolites. Actinomycetologica 22:42–45

    Google Scholar 

  • Hayakawa M (2008) Studies on the isolation and distribution of rare actinomycetes in soil. Actinomycetologica 22:12–19

    Google Scholar 

  • Haynes KG, Wanner LA, Thill CA, Bradeen JM, Miller J, Novy RG, Whitworth JL Corsini DL, Vinyard BT (2006) Common scab trials of potato varieties and advanced selections in 2003. Am J Potato Res 87:261–276

    Google Scholar 

  • Healy FG, Lambert DH (1991) Relationships among Streptomyces spp causing potato scab. Int J Syst Bacteriol 41:479–482

    Google Scholar 

  • Healy FG, Bukhalid RA, Loria R (1999) Characterization of an insertion sequence element associated with genetically diverse plant pathogenic Streptomyces spp. J Bacteriol 181:1562–1568

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henningson PJ, Gudmestad NC (1991) Fatty acid analysis of phytopathogenic coryneform bacteria. J Gen Microbiol 137:427–440

    CAS  Google Scholar 

  • Hecht ST, Causey WA (1976) Rapid methods for the detection and identification of mycolic acids in actinomycetes and related bacteria. Clin Microbiol 4:284–287

    CAS  Google Scholar 

  • Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycetes communities by specific amplification of gene encoding 16S rDNA and gel-electrophoretic separation in denaturing gradient. Appl Environ Microbiol 63:3233–3241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirsch P, Mev U, Kroppenstedt RM, Schumann P, Stackebrandt E (2004) Cryptoendolithic actinomycetes from antarctic sandstone rock samples: micromonospora endolithica sp nov., and two Isolates Related to Micromonospora coerulea Jensen 1932. Syst Appl Microbiol 27:166–174

    CAS  PubMed  Google Scholar 

  • Hjort K, Bergstrom M, Adesina MF, Jansson JK, Smalla K, Sjoling S (2010) Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen-suppressive soil. FEMS Microbiol Ecol 71:197–207

    CAS  PubMed  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (2000) Bergey’s manual of determinative bacteriology nineth edn. Lippencott, Williams Wilkens, Philadelphia, pp 653–655

    Google Scholar 

  • Hönerlage W, Hahn D, Zepp K, Zeyer J, Normand P (1994) A hypervariable 23S rRNA region provides a discriminating target for specific characterization of uncultured and cultured Frankia. Syst Appl Microbiol 17:433–443

    Google Scholar 

  • Huguet V, McCray Batzli J, Zimpfer JF, Normand P, Dawson JO, Fernandez MP (2001) Diversity and specificity of Frankia strains in nodules of sympatric Myrica gale, Alnus incana, and Shepherdia canadensis determined by rrs gene polymorphism. Appl Environ Microbiol 67:2116–2122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Humble MW, King A, Phillips I (1977) API ZYM: a simple rapid system for the detection of bacterial enzymes. J Clin Pathol 30:275–277

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huss-Danell K, Myrold DD (1994) Intrageneric variation in nodulation of Alnus: consequences for quantifying Frankia nodulation units in soil. Soil Biol Biochem 26:525–531

    Google Scholar 

  • Ibekwe AM, Kennedy AC (1998) Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions. FEMS Microbiol Ecol 26:151–163

    CAS  Google Scholar 

  • Ibekwe AM, Papiernik SK, Gan J, Yates SR, Yang C, Crowley DE (2001) Impact of fumigants on soil microbial communities. Appl Environ Microbiol 67:3245–3257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Igarashi Y, Iida T, Yoshida R, Furumai T (2002) Pteridic acids A and B, novel plant growth promoters with auxin-like activity from Streptomyces hygroscopicus TP-A0451. J Antibiot 55:764–767

    CAS  PubMed  Google Scholar 

  • Intra B, Matsumoto A, Inahashi Y, Ōmura S, Takahashi Y, Panbangred W (2013) Actinokineospora bangkokensis sp. nov., isolated from rhizospheric soil. Int J Sys Evol Microbiol 63:2655–2660

    CAS  Google Scholar 

  • Jacques MA, Durand K, Orgeur G, Balidas S, Fricot C, Bonneau S, Quil-lévéré A, Audusseau C, Olivier V, Grimault V (2012) Phylogenetic analysisand polyphasic characterization of Clavibacter michiganensis strains isolated from tomato seeds reveal that non-pathogenic strains are distinct from C. michiganensis subsp. michiganensis. Appl Environ Microbiol 78:8388–8402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jahr H, Bahro R, Burger A, Ahlemeyer J, Eichenlaub R (1999) Interactions between Clavibacter michiganensis and its host plants. Environ Microbiol 1:113–118

    CAS  PubMed  Google Scholar 

  • Jahr H, Dreier J, Meletzus D, Bahro R, Eichenlaub R (2000) The endo-β-1,4-glucanase CelA of Clavibacter michiganensis subsp michiganensis is a pathogenicity determinant required for induction of bacterial wilt of tomato. Mol Plant-Microbe Interact 13:703–14

    CAS  PubMed  Google Scholar 

  • Jamann S, Fernandez MP, Normand P (1993) Typing method for N2-¢xing bacteria based on PCR-RFLP-application to the characterization of Frankia strains. Mol Ecol 2:17–26

    CAS  PubMed  Google Scholar 

  • Janso JE, Carter GT (2010) Phylogenetically unique endophytic actinomycetes from tropical plants possess great biosynthetic potential. Appl Environ Microbiol 76:4377–4386

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jayasinghe BATD, Parkinson D (2007) Actinomycetes as antagonists of litter decomposer fungi. Appl Soil Ecol 38:109–118

    Google Scholar 

  • Jeong S-C, Myrold DD (1999) Genomic fingerprinting of Frankia microsymbionts from Ceanothus copopulations using repetitive sequences and polymerase chain reactions. Can J Bot 77:1220–1230

    CAS  Google Scholar 

  • Johnson EG, Joshi MV, Gibson DM, Loria R (2007) Cello-oligosaccharides released from host plants induce pathogenicity in scab-causing Streptomyces species. Physiol Mol Plant Pathol 71:18–25

    CAS  Google Scholar 

  • Joo GJ (2005) Purification and characterization of an extracellular chitinase from the antifungal biocontrol agent Streptomyces halstedii. Biotechnol Lett 27:1483–1486

    CAS  PubMed  Google Scholar 

  • Joshi MV, Loria R (2007) Streptomyces turgidiscabies possesses a functional cytokinin biosynthetic pathway and produces leafy galls. Mol Plant-Microbe Interact 20(7):751–758

    CAS  PubMed  Google Scholar 

  • Joshi MV, Rong X, Moll S, Kers J, Franco C, Loria R (2007) Streptomyces turgidiscabies secretes a novel virulence protein, Nec1, which facilitates infection. Molec Plant-Microbe Interact 20:599–608

    CAS  Google Scholar 

  • Jung S-Y, Lee S-Y, Oh T-K, Yoon J-H (2007) Agromyces allii sp nov., isolated from the rhizosphere of Allium victorialis var platyphyllum. Int J Sys Evol Microbiol 57:588–593

    CAS  Google Scholar 

  • Kaewkla O, Franco CMM (2010a) Nocardia callitridis sp nov., an endophytic actinobacterium isolated from a surface-sterilized root of an Australian native pine tree. Int J Syst Evol Microbiol 60:1532–1536

    CAS  Google Scholar 

  • Kaewkla O, Franco CMM (2010b) Pseudonocardia adelaidensis sp. nov., an endophytic actinobacterium isolated from the surfacesterilized stem of a grey box tree (Eucalyptus microcarpa). Int J Syst Evol Microbiol 60:2818–2822

    CAS  Google Scholar 

  • Kaewkla O, Franco CMM (2010c) Pseudonocardia eucalypti sp nov., an endophytic actinobacterium with a unique knobby spore surface, isolated from roots of a native Australian eucalyptus tree. Int J Syst Evol Microbiol 61:742–746

    Google Scholar 

  • Kaewkla O, Franco CMM (2011) Actinopolymorpha pittospori sp nov., an endophytic actinobacterium isolated from surfacesterilized leaves of an Australian native apricot tree. Int J Syst Evol Microbiol 61:2616–2620

    CAS  PubMed  Google Scholar 

  • Kaewkla O, Franco CMM (2012) Promicromonospora endophytica sp nov., an endophytic actinobacterium isolated from the root of an Australian native Grey Box tree. Int J Sys Evol Microbiol 62:1687–1691

    CAS  Google Scholar 

  • Kaewkla O, Franco CMM (2013a) Kribbella endophytica sp nov., an endophytic actinobacterium isolated from the surface-sterilized leaf of a native apricot tree. Int J Syst Evo Microbiol 63:1249–1253

    CAS  Google Scholar 

  • Kaewkla O, Franco CMM (2013b) Rational approaches to improving the isolation of endophytic actinobacteria from Australian native trees. Microb Ecol 65:384–393

    Google Scholar 

  • Kaiser O, Pühler A, Selbitschka W (2001) Phylogenetic analysis of microbial diversity in the rhizoplane of oilseed rape (Brassica napus cv Westar) employing cultivation-dependent and cultivation-independent approaches. Microb Ecol 42:136–149

    CAS  PubMed  Google Scholar 

  • Kaneshiro WS, Mizumoto CY, Alvarez AM (2006) Differentiation of Clavibacter michiganensis subsp michiganensis from seed-borne saprophytes using ELISA, Biolog and 16S rDNA sequencing. Eur J Plant Pathol 116:45–56

    CAS  Google Scholar 

  • Kasai H, Tamura T, Harayama S (2000) Intragenic relationships among Micromonospora species deduced from gyrB-based phylogeny and DNA relatedness. Int J Syst Evol Microbiol 50:127–134

    CAS  PubMed  Google Scholar 

  • Kennedy AC (1999) Bacterial diversity in agroecosystems Agriculture. Ecosyst Environ 74:65–76

    Google Scholar 

  • Kers JA, Cameron KD, Joshi MV, Bukhalid RA, Morello JE, Wach MJ, Gibson DM, Loria R (2005) A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces species. Mol Microbiol 55:1025–1033

    CAS  PubMed  Google Scholar 

  • Khamna S, Yokota A, Lumyong S (2009) Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25(4):649–655

    CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces Genetics, 2nd edn. The John Innes Foundation, Norwich

    Google Scholar 

  • Kirby BM, Meyers PR (2010) Micromonospora tulbaghiae sp nov., isolated from the leaves of wild garlic, Tulbaghia violacea. Int J Sys Evol Microbiol 60:1328–1333

    CAS  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58(2):169–188

    CAS  PubMed  Google Scholar 

  • Kizuka M, Enokita R, Takanashi K, Okamoto Y, Otsuka T, Shigematsu Y, Inoue Y, Okazaki T (1998) Studies on actinomycetes isolated from plant leaves. Actinomycetologica 12:89–91

    CAS  Google Scholar 

  • Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, Mering C von, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kortemaa H, Rita H, Haahtela K, Smolander A (1994) Root colonization ability of antagonistic Streptomyces griseoviridis. Plant Soil 163:77–83

    Google Scholar 

  • Kortemaa H, Pennanen A, Smolander A, Haahtela K (1997) Distribution of antagonistic Streptomyces griseoviridis in rhizosphere and non-rhizosphere sand. J phytopathol 145:137–143

    Google Scholar 

  • Kovács G, Burghardt J, Pradella S, Schumann P, Stackebrandt E, Marialigeti K (1999) Kocuria palustris sp nov., and Kocuria rhizophila sp nov., isolated from the rhizoplane of the narrow-leaved cattail (Typha angustifolia). Int J Syst Bacteriol 49:167–173

    PubMed  Google Scholar 

  • Kowalchuk GA, Buma DS, de Boer W, Klinkhamer PG, van Veen JA (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81:509–520

    PubMed  Google Scholar 

  • Kreuze JF, Suomalainen S, Paulin L, Valkonen JPT (1999) Phylogenetic analysis of 16S rRNA genes and PCR analysis of the nec1 gene from Streptomyces spp causing common scab, pitted scab, and netted scab in Finland. Phytopathology 89:462–469

    CAS  PubMed  Google Scholar 

  • Kroppenstedt RM (1985) Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics, society for applied bacteriol technical series, vol 20. Academic, New York, pp 173–199

    Google Scholar 

  • Kudo T, Matsushima K, Itoh T, Sasaki J, Suzuki K (1998) Description of four new species of the genus Kineosporia: Kineosporia succinea sp nov., Kineosporia rhizophila sp nov., Kineosporia mikuniensis sp nov., and Kineosporia rhamnosa sp nov., isolated from plant samples, and amended description of the genus Kineosporia. Int J Syst Bacteriol 48:1245–1255

    CAS  PubMed  Google Scholar 

  • Kunoh H (2002) Endophytic actinomycetes: attractive biocontrol agents. J Gen Plant Pathol 68:249–252

    CAS  Google Scholar 

  • Kuster E (1968) Taxonomy of soil actinomycetes and related organisms In: Gray TRG, Parkinson, D (eds) The ecology of soil bacteria, University of Toronto Press, Toronto, pp 322–336

    Google Scholar 

  • Labeda DP (1992) DNA-DNA hybridization in the systematics of Streptomyces. Gene 115: 249–253

    CAS  PubMed  Google Scholar 

  • Lambert DH, Loria R (1989a) Streptomyces acidiscabies sp nov., Int J Syst Bacteriol 39:393–396

    Google Scholar 

  • Lambert DH, Loria R (1989b) Streptomyces scabies sp nov., nom rev. Int J Syst Bacteriol 39:387–392

    Google Scholar 

  • Lanoot B, Vancanneyt M, Dawyndt P, Cnockaert MC, Zhang J, Huang Y, Liu Z, Swings J (2004) BOX-PCR fingerprinting as a powerful tool to reveal synonymous names in the genus Streptomyces: emended descriptions are proposed for the species Streptomyces cinereorectus, S. fradiae, S. tricolor, S. colombiensis, S. filamentosus, S. vinaceus and S. phaeopurpureus. Syst Appl Microbiol 27:84–92

    CAS  PubMed  Google Scholar 

  • Lanoot B, Vancanneyt M, Hoste B, Vandemeulebroecke K, Cnockaert MC, Dawyndt P, Huang Y, Liu Z, Swings J (2005) Grouping of streptomycetes using 16S-TS RFLP fingerprinting. Res Microbiol 156:755–762

    CAS  PubMed  Google Scholar 

  • Lapage SP, Sneath PHA, Lessel EF, Skerman VBD, Seeliger HPR, Clark WA (1992) International code of nomenclature of bacteria (1990 Revision). American Society for Microbiology, Washington, DC

    Google Scholar 

  • Lapwood DH, Wellings LW, Hawkins JH (1973) Irrigation as a practical means to control potato common scab (Streptomyces scabies): Final experiment and conclusions. Plant Pathol 22:35–41

    Google Scholar 

  • Lechevalier MP (1988) Actinomycetes in agriculture and forestry. In: Goodfellow MG, Williams ST, Modarski M (eds) Actinomycetes in biotechnology ̓88, Academic, London, pp 327–358

    Google Scholar 

  • Lechevalier MP, Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20: 435–443

    CAS  Google Scholar 

  • Lechevalier MP, Lechevalier H (1980) The chemotaxonomy of actinomycetes. In: Dietz A, Thayer DW (eds) Actinomycetes taxonomy: special publication no.°6. Society for Industrial Microbiology, Arlington, pp 225–292

    Google Scholar 

  • Lechevalier MP, Lechevalier H (1990) Systematic isolation and culture of Frankia In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and Actinorhizal Plants. Academic, New York, pp 35–60

    Google Scholar 

  • Lechevalier MP, Stern AE, Lechevalier H (1981) Phospholipids in the taxonomy of actinomycetes. Zbl Bakt Microbiol 11:111–116

    CAS  Google Scholar 

  • Lee SD (2009a) Amycolatopsis ultiminotia sp nov., isolated from rhizosphere soil, and emended description of the genus Amycolatopsis. Int J Syst Evol Microbiol 59:1401–1404

    CAS  Google Scholar 

  • Lee SD (2009b) Kineococcus rhizosphaerae sp nov., isolated from rhizosphere soil. J Sys Evol Microbiol 59:2204–2207

    CAS  Google Scholar 

  • Lee SD (2010) Frondihabitans peucedani sp nov., an actinobacterium isolated from rhizosphere soil, and emended description of the genus Frondihabitans Greene et al. (2009). Int J Syst Evol Microbiol 60:1740–1744

    CAS  PubMed  Google Scholar 

  • Lee IM, Bartoszyk IM, Gundersen-Rindal DE, Davis RE (1997a) Phylogeny and classification of bacteria in the genera Clavibacter and Rathayibacter on the basis of 16S rRNA gene sequence analyses. Appl Environ Microbiol 63:2631–2636

    CAS  Google Scholar 

  • Lee IM, Bartoszyk IM, Gundersen DE, Mogen B, Davis RE (1997b) Nested PCR for ultrasensitive detection of the potato ring rot bacterium, Clavibacter michiganensis subsp sepedonicus. Appl Environ Microbiol 63:2625–30

    CAS  Google Scholar 

  • Lee SO, Choi GJ, Choi YH, Jang KS, Park D-J, Kim C-J, Kim J-C (2008) Isolation and characterization of endophytic actinomycetes from Chinese cabbage roots as antagonists to Plasmodiophora brassicae. J Microbiol Biotechnol 18:1741–1746

    CAS  PubMed  Google Scholar 

  • Lee DW, Lee S-Y, Yoon J-H, Lee SD (2011) Nocardioides ultimimeridianus sp nov., and Nocardioides maradonensis sp nov., isolated from rhizosphere soil. Int J Syst Evol Microbiol 61:1933–1937

    CAS  PubMed  Google Scholar 

  • Lee H-J, Han S-I, Whang K-S (2012) Catenulispora graminis sp nov., a rhizobacterium from bamboo (Phyllostachys nigro var henonis) rhizosphere soil. Int J Syst Evol Microbiol 62:2589–2592

    CAS  PubMed  Google Scholar 

  • Lehr NA, Schrey SD, Hampp R, Tarkka MT (2008) Root inoculation with a forest soil streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce. New Phytol 177:965–976

    PubMed  Google Scholar 

  • Lehtonen MJ, Rantala H, Kreuze JF, Bang H, Kuisma L, Koski P, Virtanen E, Vihlman K, Valkonen JPT (2004) Occurrence and survival of potato scab pathogens (Streptomyces species) on tuber lesions: quick diagnosis based on a PCR-based assay. Plant Pathol 53:280–287

    Google Scholar 

  • Leiminger J, Frank M, Wenk C, Poschenrieder G, Kellermann A, Schwarzfischer A (2013) Distribution and characterization of Streptomyces species causing potato common scab in Germany. Plant Pathol 62:611–623

    CAS  Google Scholar 

  • Leiner RH, Fry BA, Carling DE, Loria R (1996) Probable involvement of thaxtomin A in pathogenicity of Streptomyces scabies on seedlings. Phytopathology 86:709–713

    CAS  Google Scholar 

  • Li X, De Boer SH (1995) Comparison of 16S ribosomal RNA genes in Clavibacter michiganensis subspecies with other coryneform bacteria. Can J Microbiol 41:925–929

    CAS  PubMed  Google Scholar 

  • Li J, Zhao G-Z, Zhang Y-Q, Klenk H-P, Pukall R, Qin S, Xu L-H, Li W-J (2008) Dietzia schimae sp nov., and Dietzia cercidiphylli sp nov., from surface-sterilized plant tissues. Int J Syst Evol Microbiol 58:2549–2554

    CAS  PubMed  Google Scholar 

  • Li J, Zhao G-Z, Qin S, Huang H-Y, Zhu W-Y, Xu L-H, Li W-J (2009) Saccharopolyspora tripterygii sp nov., an endophytic actinomycetes isolated from the stem of Tripterygium hypoglaucum. Int J Syst Evol Microbiol 59:3040–3044

    CAS  PubMed  Google Scholar 

  • Li J, Zhao G-Z, Huang H-Y, Zhu W-Y, Lee J-C, Xu L-H, Kim C-J, Li W-J (2011) Nonomuraea endophytica sp nov., an endophytic actinomycete isolated from Artemisia annua L. Int J Syst Evol Microbiol 61:757–761

    CAS  PubMed  Google Scholar 

  • Liu N, Wang H, Liu M, Gu Q, Zheng W, Huang Y (2009) Streptomyces alni sp nov., a daidzein-producing endophyte isolated from a root of Alnus nepalensis D Don. Int J Sys Evol Microbiol 59:254–258

    CAS  Google Scholar 

  • Locci R (1994) Actinomycetes as plant pathogens. Eur J Plant Pathol 100:179–200

    Google Scholar 

  • Locci R, Sharples GP (1984) Morphology. In: Goodfellow MG, Williams ST, Modarski M (eds) The biology of actinomycetes. Academic, Orlando, pp 165–199

    Google Scholar 

  • Loria R, Bukhalid RA, Fry BA, King RR (1997) Plant pathogenicity in the genus Streptomyces. Plant Dis 81:836–846

    Google Scholar 

  • Loria R, Coombs J, Yoshida M, Kers J, Bukhalid R (2003) A paucity of bacterial root diseases: Streptomyces succeeds where others fail. Physiol Mol Plant Pathol 62:65–72

    Google Scholar 

  • Louws FJ, Bell J, Medina-Mora CM, Smart CD, Opgenorth D, Ishimaru CA, Hausbeck MK, de Bruijn, FJ, Fulbright DW (1998) rep-PCR-mediated genomic fingerprinting: a rapid and effective method to identify Clavibacter michiganensis. Phytopathology 88:862–868

    CAS  PubMed  Google Scholar 

  • Ludwig W, Euzéby J, Whitman WB (2012). Taxonomic outline of the phylum Actinobacteria. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo M E, Suzuki K, Ludwig W, Whitman WB (eds) Bergey’s Manual of Systematic Bacteriology, 2nd edn, vol 5, Springer, New York, pp 29–31

    Google Scholar 

  • Ludwig W, Bauer SH, Bauer M, Held I, Kirchhof G, Schulze R, Huber I, Spring S, Hartmann A, Schleifer KH (1997). Detection and in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol Lett 153:181–190

    CAS  PubMed  Google Scholar 

  • Lumini E, Bosco M (1999) Polymerase chain reaction-restriction fragment length polymorphisms for assessing and increasing biodiversity of Frankia culture collections. Can J Botany 77:1261–1269

    CAS  Google Scholar 

  • Lumini E, Bosco M, Fernandez MP (1996) PCR-RFLP and total DNA homology revealed three related genomic species among broad-host-range Frankia strains. FEMS Microbiol Ecol 21:303–311

    CAS  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luo LX, Walters C, Bolkan H, Liu XL, Li JQ (2008) Quantification of viable cells of Clavibacter michiganensis subsp. michiganensis using a DNA binding dye and a real-time PCR assay. Plant Pathol 57:332–337

    CAS  Google Scholar 

  • Macagnan D, Romeiro da SR, Pomella AWV, deSouza JT (2008) Production of lytic enzymes and siderophores, and inhibition of germination of basidiospores of Moniliophthora (ex Crinipellis) perniciosa by phylloplane actinomycetes. Biol Control 47:309–314

    CAS  Google Scholar 

  • MacNaughton SJ, O’Donnell AG, Embley TM (1994) Permeabilization of mycolic acid-containing actinomycetes for in situ hybridization with fluorescently labeled oligonucleotide probes. Microbiology 140:2859–2865

    CAS  PubMed  Google Scholar 

  • Macrae A, Rimmer LD, O’Donnel GO (2000) novel bacterial diversity recovered from the rhizosphere of oilseed rape (Brassica napus) determined by the analysis of 16S ribosomal DNA. Antonie van Leeuwenhoek 78:13–21

    CAS  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Lee J-S, Lee K-C, Saravanan VS, Santhanakrishnan P (2010a) Microbacterium azadirachtae sp nov., a plant growth-promoting actinobacterium isolated from the rhizoplane of neem seedlings. Int J Syst Evol Microbiol 60: 687–1692

    Google Scholar 

  • Madhaiyan M, Poonguzhali S, Lee J-S, Senthilkumar M, Lee K-C, Sundaram S (2010b) Leifsonia soli sp nov., a yellow-pigmented actinobacterium isolated from teak rhizosphere soil. Int J Syst Evol Microbiol 60:1322–1327

    CAS  Google Scholar 

  • Maldonado LA, Stach JEM, Pathom-aree W, Ward AC, Bull AT, Goodfellow M (2005) Diversity of cultivable actinobacteria in geographically widespread marine sediments. Antonie van Leeuwenhoek 87:11–18

    PubMed  Google Scholar 

  • Manter DK, Delgado JA, Holm DG, Stong RA (2010) Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microb Ecol 60:157–66

    PubMed  Google Scholar 

  • Maréchal J, Clement B, Nalin R, Gandon C, Orso S, Cvejic JH, Bruneteau M, Berry AM, Normand P (2000) A recA gene phylogenetic analysis confirms the close proximity of Frankia to Acidothermus. Int J Syst Evol Microbiol 50:781–785

    PubMed  Google Scholar 

  • Maunuksela L, Zepp K, Koivula T, Zeyer J, Haahtela K, Hahn D (1999) Analysis of Frankia populations in three soils devoid of actinorhizal plants. FEMS Microbiol Ecol 28:11–21

    CAS  Google Scholar 

  • McCaig AE, Glover LA, Prosser JI (1999) Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl Environ Microbiol 65:1721–1730

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCarthy AJ, Williams ST (1992) Actinomycetes as agents of biodegradation in the environment-a review. Gene 115:189–192

    CAS  PubMed  Google Scholar 

  • McEwan NR, Wheeler CT, Milner JJ (1994) Strain discrimination of cultured and symbiotic Frankia by RFLP-PCR. Soil Biol Biochem 26:541–545

    Google Scholar 

  • McVeigh HP, Munro J, Embley TM (1996) Molecular evidence for the presence of novel Actinomycete lineages in a temperate forest soil. J Ind Microbiol 17:197–204

    CAS  Google Scholar 

  • Meletzus D, Bermpohl A, Dreier J, Eichenlaub R (1993) Evidence for plasmid-encoded virulence factors in the phytopathogenic bacterium Clavibacter michiganensis subsp michiganensis NCPPB382. J Bacteriol 175:2131–2136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker PAHM, Raaijmakers JM (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    CAS  PubMed  Google Scholar 

  • Miller HJ, Henken G, van Veen JA (1989) Variation and composition of bacterial populations in the rhizospheres of maize, wheat and grass cultivars. Can J Microbiol 35:656–660

    Google Scholar 

  • Miller KM, Ming TJ, Schulze AD, Withler RE (1999) Denaturing gradient gel electrophoresis (DGGE): a rapid and sensitive technique to screen nucleotide sequence variation in populations. Biotechniques 27:1016–1030

    CAS  PubMed  Google Scholar 

  • Minamiyama H, Shimizu M, Kunoh H, Furumai T, Igarashi Y, Onaka H, Yoshida R (2003) Multiplication of isolate R-5 of Streptomyces galbus on rhododendron leaves and its production of cell wall-degrading enzymes. J Gen Plant Pathol 69:65–70

    CAS  Google Scholar 

  • Mirza BS, Welsh AK, Hahn D (2007) Saprophytic growth of inoculated Frankia sp in soil microcosms. FEMS Microbiol Ecol 62:280–289

    CAS  PubMed  Google Scholar 

  • Mirza BS, Welsh AK, Rasul G, Rieder JP, Paschke MW, Hahn D (2009a) Diversity of Frankia populations in root nodules of different host plant species revealed by nifH gene sequence analysis. Microb Ecol 58:384–393

    Google Scholar 

  • Mirza BS, Welsh AK, Rieder JP, Paschke MW, Hahn D (2009b) Diversity of Frankiae in soils from five continents. Syst Appl Microbiol 32:558–570

    CAS  Google Scholar 

  • Misk A, Franco C (2011) Biocontrol of chickpea root rot using endophytic actinobacteria. BioControl 56:811–822

    Google Scholar 

  • Miyajima K, Tanaka F, Takeuchi T, Kuninaga S (1998) Streptomyces turgidiscabies sp nov., Int J Syst Bacteriol 48:495–502

    PubMed  Google Scholar 

  • Mogen BD, Oleson HR, Sparks RB, Gudmestad NC, Oleson AE (1990) Genetic variation in strains of Clavibacter michiganensis subsp sepedonicum: polymorphisms in restriction fragments containing a highly repeated sequence. Phytopathology 80:90–96

    Google Scholar 

  • Monciardini P, Sosio M, Cavaletti L, Chiocchini C, Donadio S (2002) New PCR primers for the selective amplification of 16S rDNA from different groups of actinomycetes. FEMS Microbiol Ecol 42:419–429

    CAS  PubMed  Google Scholar 

  • Morgan JA, Bending GD, White PJ (2005) Biological costs and benefits to plant-microbe interactions in the rhizosphere. J Exp Bot 56:1729–1739

    CAS  PubMed  Google Scholar 

  • Morón R, González I, Genilloud O (1999) New genus-specific primers for the PCR identification of members of the genera Pseudonocardia and Saccharopolyspora. Int J Syst Bacteriol 49:149–162

    PubMed  Google Scholar 

  • Myrold DD, Hilger AB, Huss-Danell K, Martin KJ (1994) Use of molecular methods to enumerate Frankia in soil. In: Ritz K, Dighton J, Giller KE (eds) Beyond the biomass. Wiley, Chichester, pp 127–136

    Google Scholar 

  • Natsume M, Ryu R, Abe H (1996) Production of phytotoxins, concanamycins A and B by Streptomyces spp. causing potato (Solanum tuberosum) scab. Ann Phytopathol Soc Japan 62:411–413

    CAS  Google Scholar 

  • Natsume M, Komiya M, Koyanagi F, Tashiro N, Kawaide H, Abe H (2005) Phytotoxin produced by Streptomyces sp causing potato russet scab in Japan. J Gen Plant Pathol 71:364–369

    CAS  Google Scholar 

  • Navarro E, Nanlin R, Gauthier D, Normand P (1997) The nodular microsymbionts of Gymnostoma spp are Elaeagnus infective Frankia strains. Appl Environ Microbiol 63:1610–1616

    CAS  PubMed Central  PubMed  Google Scholar 

  • Navarro E, Jaffre T, Gauthier D, Gourbiere F, Rinaudo G, Simonet P, Normand P (1999) Distribution of Gymnostoma spp Microsymbiotic Frankia strains in New Caledonia is related to soil type and to host-plant species. Mol Ecol 8:1781–1788

    PubMed  Google Scholar 

  • Nazaret S, Cournoyer B, Normand P, Simonet P (1991) Phylogenetic relationships among Frankia genomic species determined by use of amplified 16S rRNA sequences. J Bacteriol 173:4072–4078

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nazari F, Niknam GR, Ghasemi A, Taghavi SM, Momeniandand H, Torabi S (2007). An investigation on strains of Clavibacter michiganensis subsp. michiganensis in north and north west of Iran. J Phytopathol 155:563–569

    CAS  Google Scholar 

  • Nimnoi P, Pongsilp N, Lumyong S (2010) Genetic diversity and community of endophytic actinomycetes within the roots of Aquilaria crassna Pierre ex Lec assessed by actinomycetes-specific PCR and PCR-DGGE of 16S rRNA gene. Biochem Syst Ecol 38:595–601

    CAS  Google Scholar 

  • Niner BM, Brandt JP, Villegas M, Marshall CR, Hirsch AM, Valdés M (1996) Analysis of partial sequences of genes coding for 16S rRNA of actinomycetes isolated from Causarina equisetifolia nodules in Mexico. Appl Environ Microbiol 62:3034–3036

    CAS  PubMed Central  PubMed  Google Scholar 

  • Normand P, Bousquet J (1989) Phylogeny of nitrogenase sequences in Frankia and other nitrogen-fixing microorganisms. J Mol Evol 29:436–447

    CAS  PubMed  Google Scholar 

  • Normand P, Simonet P, Bardin R (1988) Conservation of nif sequences in Frankia. Molec Genetics and Genomics 213:238–246

    CAS  Google Scholar 

  • Normand P, Orso S, Cournoyer B, Jeannin P, Chapelon C, Dawson J, Evtushenko L, Misra AK, (1996) Molecular phylogeny of the genus Frankia and related genera and emendation of family Frankiaceae. Int J Syst Bacteriol 46:1–9

    CAS  PubMed  Google Scholar 

  • Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E, Bassi CA, Berry AM, Bickhart DM, Choisne N, Couloux A, Cournoyer B, Cruveiller S, Daubin V, Demange N, Francino MP, Goltsman E, Huang Y, Kopp OR, Labarre L, Lapidus A, Lavire C, Marechal J, Martinez M, Mastronunzio JE, Mullin BC, Niemann J, Pujic P, Rawnsley T, Rouy Z, Schenowitz C, Sellstedt A, Tavares F, Tomkins JP, Vallenet D, Valverde C, Wall LG, Wang Y, Medigue C, Benson DR (2007) Genome characteristics of facultatively symbiotic Frankia sp strains reflect host range and host plant biogeography. Genome Res 17:7–15

    PubMed Central  PubMed  Google Scholar 

  • O’Donnell AG (1988) Recognition of novel actinomycetes. In: Goodfellow MG, Williams ST, Modarski M (eds) Actinomycetes in biotechnology. Academic, London, pp 360–432

    Google Scholar 

  • Okazaki T (2003) Studies on actinomycetes isolated from plant leaves. In: Kurtboke I (ed) Selective isolation of rare actinomycetes. National Library of Australia, Australia, pp 102–121

    Google Scholar 

  • Oniki M, Suzui T, Araki T, Sonoda R-I, Chiba T, Takeda T (1986) Causal agent of russet scab of potato. Bull Natl Inst Agro-Environ Sci 2:56–59

    Google Scholar 

  • Pandey A, Palni LMS (2007) The rhizosphere effect in trees of the Indian Central Himalaya with special reference to altitude. Appl Ecol Environ Res 5:93–102

    Google Scholar 

  • Paradis E, Goyer C, Hodge NC, Hogue R, Stall RE, Beaulieu C (1994) Fatty acid and protein profiles of Streptomyces Scabies strains isolated in eastern Canada. Int J Syst Bacteriol 44:561–564

    CAS  Google Scholar 

  • Park Y-H, Suzuki K-I, Yim D-G, Lee K-C, Kim E, Yoon J-S, Kim S-J, Kho Y-H, Goodfellow M, Komogata K (1993) Suprageneric classification of peptidoglycan group B actinomycetes by nucleotide sequencing of 5S ribosomal RNA. Antonie van Leeuwenhoek 64:307–313

    CAS  PubMed  Google Scholar 

  • Park DH, Kim JS, Kwon SW, Wilson C, Yu YM, Hur JH, Lim CK (2003) Streptomyces luridiscabiei sp nov., Streptomyces puniciscabiei sp nov., and Streptomyces niveiscabiei sp nov., which cause potato common scab disease in Korea. Int J Syst Evol Microbiol 53:2049–2054

    CAS  PubMed  Google Scholar 

  • Pastrik K-H, Rainey FA (1999) Identification and differentiation of Clavibacter michiganensis subspecies by polymerase chain reaction-based techniques. J Phytopathol 147:687–93

    CAS  Google Scholar 

  • Pawlowski K, Sirrenberg A (2003) Symbiosis between Frankia and actinorhizal plants: root nodules of non-legumes. Indian J Experimental Biol 41:1165–1183

    CAS  Google Scholar 

  • Person LH, Martin WJ (1940) Soil rot of sweet potato in Louisiana. Phytopathology 30:913–926

    CAS  Google Scholar 

  • Picard C, Ponsonnet C, Paget E, Nesme X, Simonet P (1992) Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Appl Environ Microbiol 58:2717–2722

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qi-chun Z, Guang-huo W, Huai-ying Y (2007) Phospholipid fatty acid patterns of microbial communities in paddy soil under different fertilizer treatments. J Environ Sci 19:55–59

    Google Scholar 

  • Qin S, Li J, Zhao G-Z, Chen H-H, Xu L-H, Li W-J (2008a) Saccharopolyspora endophytica sp nov., an endophytic actinomycetes isolated from the root of Maytenus austroyunnanensis. Syst Appl Microbiol 31:352–357

    CAS  Google Scholar 

  • Qin S, Wang H-B, Chen H-H, Zhang Y-Q, Jiang C-L, Xu L-H, Li W-J (2008b) Glycomyces endophyticus sp nov., an endophytic actinomycete isolated from the root of Carex baccans Nees. Int J Syst Evol Microbiol 58:2525–2528

    CAS  Google Scholar 

  • Qin S, Chen H-H, Klenk H-P, Zhao G-Z, Li J, Xu L-H, Li W-J (2009a) Glycomyces scopariae sp nov., and Glycomyces mayteni sp nov., isolated from two medicinal plants in China. Int J Syst Evol Microbiol 59:1023–1027

    CAS  Google Scholar 

  • Qin S, Li J, Chen H-H, Zhao G-Z, Zhu W-Y, Jiang C-L, Xu L-H, Li W-J (2009b) Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 75:6176–6186

    CAS  Google Scholar 

  • Qin S, Zhao G-Z, Klenk H-P, Li J, Zhu W-Y, Xu L-H, Li W-J (2009c) Nonomuraea antimicrobica sp nov., an endophytic actinomycetes isolated from a leaf of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 59:2747–2751

    CAS  Google Scholar 

  • Qin S, Zhao G-Z, Li J, Zhu W-Y, Xu L-H, Li W-J (2009d) Actinomadura flavalba sp nov., an endophytic actinomycete isolated from leaves of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 59:2453–2457

    CAS  Google Scholar 

  • Qin S, Zhao G-Z, Li J, Zhu W-Y, Xu L-H, Li W-J (2009e) Jiangella alba sp nov., an endophytic actinomycete isolated from the stem of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 59:2162–2165

    CAS  Google Scholar 

  • Qiu F, Huang Y, Sun L, Zhang X, Liu Z, Song W (2007) Leifsonia ginsengi sp nov., isolated from ginseng root. Int J Syst Evol Microbiol 57:405–408

    PubMed  Google Scholar 

  • Qu X, Wanner LA, Christ BJ (2008) Using the TxtAB Operon to Quantify Pathogenic Streptomyces in Potato Tubers and Soil. Phytopathology 98:405–412

    CAS  PubMed  Google Scholar 

  • Rademaker JLW, De Brujin FJ (1997) Characterization and classification of microbes by rep-PCR genomic fingerprinting and computer-assisted pattern analysis In: Caetano-Anollés G, Gresshoff PM (eds) NA markers: protocols, applications and overviews. Wiley, New York, pp 151–171

    Google Scholar 

  • Rastogi G, Sani RK (2011) Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In: Ahmad I, Ahmad F, Pichtel J (eds), Microbes and microbial technology: agricultural and environmental applications. Springer, LLC, Berlin, pp 29–57

    Google Scholar 

  • Rheims H, Spröer C, Rainey FA, Stackebrandt E (1996) Molecular biological evidence for the occurrence of uncultured members of the actinomycete line of descent in different environments and geographical locations. Microbiology 142:2863–2870

    CAS  PubMed  Google Scholar 

  • Riedlinger JM, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fielder HP (2006) Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl Environ Microbiol 72:3550–3557

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rintala H, Nevalainem A, Rönkä E, Suutari M (2001) PCR primers targeting the 16S rDNA gene for the specific detection of streptomycetes. Mol Cell Probes 15:337–347

    CAS  PubMed  Google Scholar 

  • Rosbrook PA, Burggraaf AJP, Reddell P (1989) A comparison of two methods and different media for isolating Frankia from Casuarina root nodules. Plant Soil 120:187–193

    Google Scholar 

  • Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837

    CAS  PubMed  Google Scholar 

  • Rouvier C, Prin Y, Reddell P, Normand P, Simonet P (1996) Genetic diversity among Frankia strains nodulating members of the family Casuarina ceae in Australia revealed by PCR and restriction fragment length polymorphism analysis with crushed nodules. Appl Environ Microbiol 62:979–985

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roy S, Khasa DP, Greer CW (2007) Combining alders, Frankiae, and mycorrhizae for the revegetation and remediation of contamined ecosystems. Can J Bot 85:237–251

    CAS  Google Scholar 

  • Saddler GS, O’Donnell AG, Goodfellow M, Minnikin DE (1987) SIMCA pattern recognition in the analysis of Streptomycete fatty acids. J Gen Microbiol 133:1137–1147

    CAS  Google Scholar 

  • Sadowsky MJ, Kinkel LL, Bowers JH, Schottel JL (1996) Use of repetitive intergenic DNA sequences to classify pathogenic and disease suppressive Streptomyces strains. Appl Environ Microbiol 62:3489–3493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salazar O, Morón R, Genilloud O (2000) New genus-specific primers for the PCR identification of members of the genus Saccharomonospora and evaluation of the microbial diversity of wild-type isolates of Saccharomonospora detected from soil DNAs. Int J Syst Evol Microbiol 50:2043–2055

    CAS  PubMed  Google Scholar 

  • Salazar O, Gonzalez I, Genilloud O (2002) New genus-specific primers for the PCR identification of new isolates of the genera Nocardiopsis and Saccharothrix. Int J Syst Evol Microbiol 52:1411–1421

    CAS  PubMed  Google Scholar 

  • Samant S, Sha Q, Iyer A, Dhabekar P, Hahn D (2012) Quantification of Frankia in soils using SYBR Green based qPCR. Syst Appl Microbiol 35:191–197

    CAS  PubMed  Google Scholar 

  • Sardi P, Saracchi M, Quaroni S, Petrolini B, Borgonovi E, Merli S (1992) Isolation of endophytic Streptomyces strains from surface-sterilized roots. Appl Environ Microbiol 58:2691–2693

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sasaki J, Chijimatsu M, Suzuki K-I (1998) Taxonomic significance of 2,4-diaminobutyric acid isomers in the cell wall peptidoglycan of actinomycetes and reclassification of Clavibacter toxicus as Rathayibacter toxicus comb nov., Int J Syst Evol Microbiol 48:403–410

    CAS  Google Scholar 

  • Sayed WF, Wheeler CT (1999) Effect of the flavonoid quercetin on culture and isolation of Frankia from Casuarina root nodules. Folia Microbiol 44(1):59–62

    CAS  Google Scholar 

  • Scholler CEG, Gurtler H, Pedersen R, Molin S, Wilkins K (2002) Volatile metabolites from actinomycetes. J Agric Food Chem 50:2615–2621

    PubMed  Google Scholar 

  • Scholte K, Labruyère RE (1985) Netted scab: a new name for an old disease in Eur Potato Res 28:443–448

    Google Scholar 

  • Schwieger F, Tebbe CC (2000) Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago sativa) and a non-target plant (Chenopodium album)-linking of 16S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria. Appl Environ Microbiol 66:3556–3565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seipke RF, Loria R (2008) Streptomyces scabies 87−22 possesses a functional tomatinase. J Bacteriol 190:7684–7692

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seipke RF, Kaltenpoth M, Hutchings MI (2011) Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol 36:862–876

    Google Scholar 

  • Sessitsch ARB, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249

    CAS  PubMed  Google Scholar 

  • Sessitsch ARB, Peifer U, Wilhelm E (2002) Cultivation independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and actinomycetes -specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23–32

    CAS  PubMed  Google Scholar 

  • Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, Overbeek L van, Brar D, Elsas JD van, Reinhold-Hurek B (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microbe Interact 25:28–36

    CAS  PubMed  Google Scholar 

  • Shartz A, Bugie E, Waksman SA (1944) Streptomycin, a subsatnce exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria. Proc Soc Exp Biol Med 55:66–69

    Google Scholar 

  • Shimizu M (2011) Endophytic actinomycetes: biocontrol agents and growth promoters. In: Maheshwari DK (ed.) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 201–220

    Google Scholar 

  • Shimizu M, Nakagawa Y, Sato Y, Furumai T, Igarashi Y, Onaka H, Yoshida R, Kunoh H (2000) Studies on endophytic actinomycetes (I) Streptomyces sp. isolated from rhododendron and its antifungal activity. J Gen Plant Pathol 66:360–366

    CAS  Google Scholar 

  • Shimizu M, Yazawa S, Ushijima Y (2009) A promising strain of endophytic Streptomyces sp for biological control of cucumber anthracnose. J Gen Plant Pathol 75:27–36

    Google Scholar 

  • Shirling E, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Sys Bacteriol 16:313–340

    Google Scholar 

  • Simon L, Jabaji-Hare S, Bousquet J, Lalonde M (1989) Confirmation of Frankia species using cellular fatty acid analysis. Syst Appl Microbiol 11:229–235

    Google Scholar 

  • Skerman VBD, McGowan V, Sneath PHA (1980) Approved list of bacterial names. Int J Syst Bacteriol 30:225–420

    Google Scholar 

  • Skerman VBD, McGowan V, Sneath PHA (eds) (1989) Approved lists of bacterial names (amended edn). American Society for Microbiology, Washington, DC

    Google Scholar 

  • Slack SA, Drenna JL, Westra AAG, Gudmestad NG, Oleson AE (1996) Comparison of PCR, ELISA, and DNA hybridization for the detection of Clavibacter michiganensis subsp sepedonicus in field-grown potatoes. Plant Dis 80:519–24

    CAS  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot R, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith PB, Thomfohrde KM, Rhoden DL, Balows A (1972) API System: a multitube micromethod for identification of Enterobacteriaceae. Appl Microbiol 24:449–452

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith NC, Hennessy J, Stead D (2001) Repetitive sequence-derived PCR profiling using the BOX-A1R primer for rapid identification of the plant pathogen Clavibacter michiganensis subsp sepedonicus. Eur J Plant Pathol 107:739–748

    CAS  Google Scholar 

  • Smolander A, Sundman V (1987) Frankia in acid soils devoid of actinorhizal plants. Physiol Plant 70:297–303

    Google Scholar 

  • Song J, Kim B-Y, Hong S-B, Cho H-S, Sohn K, Chun J, Suh J-W (2004a) Kribbella solani sp nov., and Kribbella jejuensis sp nov., isolated from potato tuber and soil in Jeju, Korea. Int J Syst Evol Microbiol 54:1345–1348

    CAS  Google Scholar 

  • Song K, Lee SC, Kang JW, Baek HJ, Suh JW (2004b) Phylogenetic analysis of Streptomyces spp Isolated from potato scab lesions in Korea on the basis of 16S rRNA gene and 16S-23S rDNA internally transcribed spacer sequences. Int J Syst Evol Microbiol 54:203–209

    CAS  Google Scholar 

  • Song GC, Yasir M, Bibi F, Chung EJ, Jeon CO, Chung YR (2011) Nocardioides caricicola sp nov., an endophytic bacterium isolated from a halophyte, Carex scabrifolia Steud. Int J Syst Evol Microbiol 61:105–109

    CAS  PubMed  Google Scholar 

  • Sørensen J (1997) The rhizosphere as a habitat for soil microorganisms. In: Van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Marcel Dekker, New York, pp 21–45

    Google Scholar 

  • Sperber JI, Rovira AD (1959) A study of the bacteria associated with the roots of subterranean clover and Wimmera ryegrass. J Appl Bacteriol 22:85–95

    Google Scholar 

  • Stach JEM, Maldonado LA, Ward AC, Goodfellow M, Bull AT (2003) New primers for the class actinobacteria: application to marine and terrestrial environments. Environ Microbiol 5:828–841

    CAS  PubMed  Google Scholar 

  • Stackebrandt E, Rainey F, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491

    Google Scholar 

  • St-Onge R, Goyer C, Coffin R, Filion M (2008) Genetic diversity of Streptomyces spp causing common scab of potato in eastern Canada. Syst Appl Microbiol 31:474–84

    CAS  PubMed  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG (1997) Associations of bacterial endophyte populations from red clover and potato crops with potential for beneficial allelopathy. Can J Microbiol 44:162–167

    Google Scholar 

  • Suzuki T, Shimizu M, Meguro A, Hasegawa S, Nishimura T, Kunoh H (2005) Visualization of infection of an endophytic actinomycete Streptomyces galbus in leaves of tissue cultured rhododendron. Actinomycetologica 19:7–12

    Google Scholar 

  • Taechowisan J, Peberdy F, Lumyong S (2003) Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J Microbiol Biotech 19:501–504

    Google Scholar 

  • Takeuchi M, Hatano K (1998) Gordonia rhizosphera sp nov., isolated from the mangrove rhizosphere. Int J Syst Bacteriol 48:907–912

    CAS  PubMed  Google Scholar 

  • Takeuchi M, Hatano K (2001) Agromyces luteolus sp nov., Agromyces rhizospherae sp nov., and Agromyces bracchium sp nov., from the mangrove rhizosphere. Int J Syst Evol Microbiol 51:1529–1537

    CAS  PubMed  Google Scholar 

  • Takeuchi T, Sawada H, Tanaka F, Matsuda I (1996) Phylogenetic analysis of Streptomyces spp causing potato scab based on 16S rRNA sequences. Int J Syst Bacteriol 46:476–479

    CAS  Google Scholar 

  • Tan GYA, Ward AC, Goodfellow M (2006) Exploration of Amycolatopsis diversity in soil using genus-specific primers and novel selective media. Syst Appl Microbiol. 29:557–569

    CAS  PubMed  Google Scholar 

  • Tian XL, Cao LX, Tan HM, Zeng QG, Jia YY, Han WQ, Zhou SN (2004) Study on the communities of endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activities in vitro. World J Microbiol Biotech 20:303–305

    Google Scholar 

  • Tian XL, Cao LX, Tan HM, Han WQ, Chen M, Liu YH, Zhou SN (2007) Diversity of cultivated and uncultivated actinobacterial endophytes in the stems and roots of rice. Microb Ecol 53:700–707

    PubMed  Google Scholar 

  • Tokala RK, Strap JL, Jung MC, Crawford DL, Salove MH, Deobald LA, Bailey FJ, Morra MJ, (2002) novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Torrey JG (1990) Cross-inoculation groups within Frankia and host-endosymbiont associations. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and Actinorhizal plants. Academic, San Diego, pp 83–106

    Google Scholar 

  • Tóth L, Maeda M, Tanaka F, Kobayashi K (2001) Isolation and identification of pathogenic strains of Streptomyces acidiscabies from netted scab lesions of potato tubers in Hokkaido (Japan). Acta Microbiol Immuno Hung 48:575–585

    Google Scholar 

  • Trejo-Estrada SR, Paszczynski A, Crawford DL (1998) Antibiotics and enzymes produced by the biocontrol agent Streptomyces violaceusniger YCED-9. J Ind Microbiol Biotechnol 21:81–90

    CAS  Google Scholar 

  • Trujillo ME, Kroppenstedt RM, Schumann P, Carro L, Martnez-Molina E (2006a) Micromonospora coriariae sp nov., isolated from root nodules of Coriaria myrtifolia. Int J Syst Evol Microbiol 56:2381–2385

    CAS  Google Scholar 

  • Trujillo ME, Kroppenstedt RM, Schumann P, Martínez-Molina E (2006b) Kribbella lupini sp. nov., isolated from the roots of Lupinus angustifolius. Int J Syst Evol Microbiol 56:407–411

    CAS  Google Scholar 

  • Trujillo ME, Kroppenstedt RM, Fernández-Molinero C, Schumann P, Martınez-Molina E (2007) Micromonospora lupini sp nov., and Micromonospora saelicesensis sp nov., isolated from root nodules of Lupinus angustifolius. Int J Syst Evol Microbiol. 57:2799–2804

    CAS  PubMed  Google Scholar 

  • Trujillo M E, Alonso-Vega P, Rodríguez R, Carro L, Cerda E, Alonso P, Martínez-Molina E (2010) The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius. ISME J 4:1265–1281

    PubMed  Google Scholar 

  • Uroz S, Buee M, Murat C, Frey-Klett P, Martin F (2010) Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol Rep 2:281–288

    CAS  PubMed  Google Scholar 

  • Valdés M, Pérez NM, de los Santo PE, Mellado JC, Cabrielas JJP, Normand P, Hirsh M (2005) Non-Frankia actinomycetes isolated from surface sterilized roots of Casuarina equisetifolia fix nitrogen. Appl Environ Microbiol 71:460–466

    PubMed Central  PubMed  Google Scholar 

  • Valois D, Fayad K, Barasubye T, Garon M, Déry C, Brezezinki R, Beaulieu C (1996) Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var rubi the causal agent of Raspberry root rot. Appl Environ Microbiol 62:1630–1635

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Elsas JD, Smalla K (1995) Extraction of microbial community DNA from soils. In: de Bruijn FJ, Akkermans ADL, van Elsas JD (eds) Molecular microbial ecology manual. Kluwer, Dordrecht, pp 1–11

    Google Scholar 

  • Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71(3):495–548

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vereecke D, Temmerman W, Jaziri M, Holsters M, Goethals K (2003) Toward an understanding of the Rhodococcus fascians - plant interaction In: Stacy G, Kean N (eds) Plant-microbe interactions, vol 6. Am Phytopathological Society (APS) Press, St Paul, pp 53–79

    Google Scholar 

  • von Wintzingerode F, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR‐based rRNA analysis. FEMS Microbiol Rev 21(3):213–229

    Google Scholar 

  • Wacksman SA, Woodruff HB (1940) The soil as a source of microorganisms antagonistic to disease producing bacteria. J Bacteriol 40:581–600

    Google Scholar 

  • Waleron M, Waleron K, Kamasa J, Przewodowski W, Lojkowska E (2011). Polymorphism analysis of housekeeping genes for identification and differentiation of Clavibacter michiganensis subspecies. Eur J Plant Pathol 131:341–354

    CAS  Google Scholar 

  • Wang Y-X, Cai M, Zhi X-Y, Zhang Y-Q, Tang S-K, Xu L-H, Cui X-L, Li W-J (2008a) Microlunatus aurantiacus sp nov., a novel actinobacterium isolated from a rhizosphere soil sample. Int J Syst Evol Microbiol 58:1873–1877

    CAS  Google Scholar 

  • Wang Y-X, Wang, H-B Zhang Y-Q, Xu L-H, Jiang C-L, Li W-J (2008b) Rhodococcus kunmingensis sp nov., an actinobacterium isolated from a rhizosphere soil. Int J Sys Evol Microbiol 58:1467–1471

    CAS  Google Scholar 

  • Wang C, Xu X-X, Qu Z, Wang H-L, Lin H-P, Xie Q-Y, Ruan J-S, Hong K (2011a) Micromonospora rhizosphaerae sp nov., isolated from mangrove rhizosphere soil. Int J Syst Evol Microbiol 61:320–324

    CAS  Google Scholar 

  • Wang F, Xu X-X, Qu Z, Wang C, Lin H-P, Xie Q-Y, J-S Ruan, Sun M, Hong K (2011b) Nonomuraea wenchangensis sp nov., isolated from mangrove rhizosphere soil. Int J Syst Evol Microbiol 61:1304–1308

    Google Scholar 

  • Wanner LA (2006) A survey of genetic variation in Streptomyces isolates causing potato common scab in the United States. Phytopathology 96:1363–1371

    CAS  PubMed  Google Scholar 

  • Wanner LA (2007a) A new strain of Streptomyces causing common scab in potato Plant Dis 91:352–359

    CAS  Google Scholar 

  • Wanner LA (2007b) High proportions of nonpathogenic Streptomyces are associated with common scab-resistant potato lines and less severe disease. Can J Microbiol 53:1062–1075

    CAS  Google Scholar 

  • Wanner LA (2009) A patchwork of Streptomyces species isolated from potato common scab lesions in North America. Am J Potato Res 86:247–64

    Google Scholar 

  • Ward N, Rainey FA, Gobel B, Stackebrandt E (1995) Identifying and culturing the “Unculturables”: a challenge for microbiologists. In: Allsopp D, Colwell R, Hawksworth D (eds) Microbial diversity and ecosystem function. CAB Int, New York, pp 89–108

    Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Google Scholar 

  • Weinert N, Piceno Y, Ding GC, Meincke R, Heuer H, Berg G, Schloter M, Andersen G, Smalla K (2011) PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiol Ecol 75:497–506

    CAS  PubMed  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    CAS  PubMed  Google Scholar 

  • Williams RC, Fisher HW (1970) Electron microscopy of tobacco mosaic virus under conditions of minimal beam exposure. J Mol Biol 52(1):121–123

    CAS  PubMed  Google Scholar 

  • Williams ST, Vickers JC (1988) Detection of actinomycetes in natural environment, problems and perspectives. In: Okami Y, Beppu T, Ogawara H (eds) Biology of actinomycetes ’88. Scientific Societies Press, Tokyo, pp 265–270

    Google Scholar 

  • Williams ST, Goodfellow M, Alderson G (1989) Genus Streptomyces Waksman, Henrici 1943. In: Williams ST, Sharpe ME, Holt JP (eds) Bergey’s manual of systematic bacteriololgy, vol 4. Williams and Wilkins, Baltimore, pp 2452–2492

    Google Scholar 

  • Witt D, Stackebrandt E (1990). Unification of the genera Streptoverticillium and Streptomyces, and amendation of Streptomyces Waksman and Henrici 1943, 339AL. Syst Appl Microbiol 13:361–371

    CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51(2):221

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiang W, Liu C, Wang X, Du J, Xi L, Huang Y (2011) Actinoalloteichus nanshanensis sp nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 61:1165–1169

    CAS  PubMed  Google Scholar 

  • Xu X, Miller SA, Baysal-Gurel F, Gartemann KH, Eichenlaub R, Rajashekara G (2010) Bioluminescence imaging of Clavibacter michiganensis subsp michiganensis infection of tomato seeds and plants. Appl Environ Microbiol 76:3978–3988

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu X-X, Qu Z, Wang H, Lin H-P, Wang C, Xie Q-Y, Ruan J-S, Hong K (2011) Asanoa hainanensis sp nov., Acrostichum speciosum isolated from rhizosphere soil of Acrostichum speciosum in a mangrove, and emended description of the genus Asanoa. Int J Syst Evol Microbiol 61:2384–2388

    CAS  PubMed  Google Scholar 

  • Xu X-X, Wang H-L, Lin H-P, Wang C, Qu Z, Xie Q-Y, Ruan J-S, Hong K (2012a) Microbispora hainanensis sp nov., isolated from rhizosphere soil of Excoecaria agallocha in a mangrove. Int J Syst Evol Microbiol 62:2430–2434

    CAS  Google Scholar 

  • Xu Z, Xu Q, Zheng Z, Huang Y (2012b) Kribbella amoyensis sp nov., isolated from rhizosphere soil of a pharmaceutical plant, Typhonium giganteum Engl. Int J Syst Evol Microbiol 62:1081–1085

    CAS  Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young JM, Watson DRW, Dye DW (2004) Reconsideration of Arthrobacter ilicis (Mandel et al 1961) Collins et al 1982 as a plant-pathogenic species Proposal to emend the authority and description of the species Request for an opinion. Int J Syst Evol Microbiol 54:303–305

    CAS  PubMed  Google Scholar 

  • Yuan LJ, Zhang YQ, Yu LY, Sun CH, Wei YZ, Liu HY, Li WJ, Zhang YQ (2010) Actinopolymorpha cephalotaxi sp nov., a novel actinomycete isolated from rhizosphere soil of the plant Cephalotaxus fortunei. Int J Syst Evol Microbiol 60:51–54

    CAS  PubMed  Google Scholar 

  • Zaluga J, Van Vaerenbergh J, Stragier P, Maes M, De Vos P (2013) Genetic diversity of non-pathogenic Clavibacter strains isolated from tomato seeds. Syst Appl Microbiol 36:426–435

    CAS  PubMed  Google Scholar 

  • Zepp K, Hahn D, Zeyer J (1997a) Evaluation of a 23S rRNA insertion as target for the analysis of uncultured Frankia populations in root nodules of alders by whole cell hybridization. Syst Appl Microbiol 20:124–132

    CAS  Google Scholar 

  • Zepp K, Hahn D, Zeyer J (1997b) In-situ analysis of introduced and indigenous Frankia populations in soil and root nodules obtaianed on Alnus glutinosa. Soil Biol Biochem 29:1595–1600

    CAS  Google Scholar 

  • Zgurskaya, HI, Evtushenko, LI, Akimov, VN, Kalakoutskii, LV (1993) Rathayibacter gen nov., including the species Rathayibacter rathayi comb nov., Rathayibacter tritici comb nov., Rathayibacter iranicus comb nov., and six strains from annual grasses. Int J Syst Bacteriol 43:143–149

    Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    CAS  PubMed  Google Scholar 

  • Zhang Y-Q, Chen J, Liu H-Y, Zhang Y-Q, W-J Li, H-Y, Yu L-Y (2011) Geodermatophilus ruber sp nov., isolated from rhizosphere soil of a medicinal plant. Int J Sys Evol Microbiol 61:190–193

    CAS  Google Scholar 

  • Zhang J, Ma Y, Yu H (2012) Arthrobacter cupressi sp nov., an actinomycete isolated from the rhizosphere soil of Cupressus sempervirens. Int J Syst Evol Microbiol 62:2731–2736

    CAS  PubMed  Google Scholar 

  • Zhao W-J, Chen H-Y, Zhu SF, Xia M-X, Tan T-W (2007). One step detection of Clavibacter michiganensis subsp. michiganensis in symptomless tomato seeds using a TaqMan probe. J Plant Pathol 89:349–351

    CAS  Google Scholar 

  • Zhao G-Z, Li J, Qin S, Zhang Y-Q, Zhu W-Y, Jiang C-L, Xu L-H, Li W-J (2009) Micrococcus yunnanensis sp nov., a novel actinobacterium isolated from surface-sterilized Polyspora axillaris roots. Int J Syst Evol Microbiol 59:2383–2387

    CAS  PubMed  Google Scholar 

  • Zhao G-Z, Li J, Huang H-Y, Zhu W-Y, Xu L-H, Li W-J (2011a) Nonomuraea rhizophila sp nov., an actinomycetes isolated from rhizosphere soil. Int J Syst Evol Microbiol 61:2141–2145

    CAS  Google Scholar 

  • Zhao GZ, Li J, Huang H-Y, Zhu W-Y, Zhao L-X, Tang S-K, Xu L-H, Li W-J (2011b) Pseudonocardia artemisiae sp nov., a novel actinobacterium isolated from surface-sterilized Artemisia annua L. Int J Syst Evol Microbiol 61:1061–1065.

    CAS  Google Scholar 

  • Zhao G-Z, Li J, Zhu W-Y, Klenk H-P, Xu L-H, Li W-J (2011c) Nocardia artemisiae sp nov., an endophytic actinobacterium isolated from surface-sterilized stem of Artemisia annua. L. Int J Syst Evol Microbiol 61:2933–2937

    CAS  Google Scholar 

  • Zhao G-Z, Li J, Zhu W-Y, Tian S-Z, Zhao L-X, Yang L-L, Xu L-H, Li W-J (2011d) Rhodococcus artemisiae sp nov., a new endophytic actinobacterium isolated from pharmaceutical plant Artemisia annua L. Int J Syst Evol Microbiol 62:900–905

    Google Scholar 

  • Zhu H-H, Yao Q, Yang, S-Z Li Z-K, Guo J (2011) Streptomyces lacticiproducens sp. nov., a lactic acid-producing streptomycete isolated from the rhizosphere of tomato plants. Int J Syst Evol Microbiol 61:35–39

    CAS  PubMed  Google Scholar 

  • Zhu W-Yg, Zhang J-L, Qin Y-L, Xiong Z-J, Zhang D-F, Klenk H-P, Zhao L-X, Xu L-H, Li W-J (2013) Blastococcus endophyticus sp. nov., a novel actinobacterium isolated from Camptotheca acuminata. Int J Syst Evol Microbiol 63:3269–3273

    CAS  PubMed  Google Scholar 

  • Zimmerman W (1990) Degradation of lignin by bacteria. J Biotechnol 13:199−130

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahim Bouizgarne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bouizgarne, B., Ait Ben Aouamar, A. (2014). Diversity of Plant Associated Actinobacteria. In: Maheshwari, D. (eds) Bacterial Diversity in Sustainable Agriculture. Sustainable Development and Biodiversity, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-05936-5_3

Download citation

Publish with us

Policies and ethics