Skip to main content

Surface Engineering for Tribology

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

The functional modification of the surfaces is in many cases the best way to control the tribological damage of a component. Following a surface engineering approach, it is possible to choose the base material, or substrate, with tailored properties (for example, special mechanical or workability properties) and delegate to the modified surface the role of counteracting the tribological loadings. In most cases, the choice of a proper surface treatment results in cost saving, since it allows using cheaper substrate materials. The use of a low-cost substrate may compensate the additional costs of the surface treatment, required to improve system performances [14].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K.G. Budinski, M.K. Budinski, Engineering Materials, Properties and Selection (Prentice Hall, Englewood Cliffs, 2002)

    Google Scholar 

  2. J. Takadoum, Materials and Surface Engineering in Tribology (Wiley, Hoboken, 2008)

    Google Scholar 

  3. K. Holmberg, A. Matthews, Coatings Tribology (Elsevier, Amsterdam, 1994)

    Google Scholar 

  4. R.F. Bunshah (ed.), Handbook of Hard Coatings (Noyes Publications, New Jersey, 2001)

    Google Scholar 

  5. S. Zhang, X. Zhang, Toughness evaluation of hard coatings and thin films—critical review. Thin Solid Films 520, 2375–2389 (2012)

    Article  Google Scholar 

  6. T. Tobie, Einfluss der Einsatzhartungstiefe auf die Grubchen- und Zahnfusstragfahigkeit grosser Zahnrader, FVA Absclussbericht (2000)

    Google Scholar 

  7. G. Totten, M. Howes, T. Inoue (eds.), Handbook of Residual Stress and Deformation of Steel (ASM International, Materials Park, 2002)

    Google Scholar 

  8. V. Savaria, F. Bridier, P. Bocher, Measuring in-depth stress gradients: the challenge of induction hardened parts. Mater. Sci. Forum 768–769, 158–165 (2014)

    Google Scholar 

  9. O.R. Lang, Berichtsband zur AWT-Tagung am 23./24. Marz 1988, Darmstadt, pp. 332–348

    Google Scholar 

  10. O. Asi, A.C. Can, J. Pineault, M. Belassel, The relationship between case depth and bending fatigue strength of gas carburized SAE 8620 steel. Surf. Coat. Technol. 201, 5979–5987 (2007)

    Article  Google Scholar 

  11. M. Boniardi, F. D’Errico, C. Tagliabue, Influence of carburizing and nitriding on failure of gears—a case study. Eng. Fail. Anal. 13, 312–339 (2006)

    Article  Google Scholar 

  12. M. Benedetti, V. Fontanari, B.R. Hohn, P. Oster, T. Tobie, Influence of shot peening on bending tooth fatigue limit of case hardened gears. Int. J. Fatigue 24, 1127–1136 (2002)

    Article  Google Scholar 

  13. A. Molinari, G. Straffelini, M. Pellizzari, M. Pirovano, Wear behaviour of diffusion and compound layers in nitrided steels. Surf. Eng. 14, 489–495 (1998)

    Article  Google Scholar 

  14. Z. Gawronski, Residual stresses in the surface layer of M2 steel after conventional and low pressure (‘NITROVAC 79’) nitriding process. Surf. Coat. Technol. 124, 19–24 (2000)

    Article  Google Scholar 

  15. H. Kato, T.S. Eyre, B. Ralph, Sliding wear characteristics of nitrided steels. Surf. Eng. 10, 65–74 (1994)

    Article  Google Scholar 

  16. G. Straffelini, G. Avi, M. Pellizzari, Effect of three nitriding treatments on tribological performance of 42CrAlMo7 steel in boundary lubrication. Wear 252, 870–879 (2002)

    Article  Google Scholar 

  17. S.J. Bull, Q. Zhou, A simulation test for wear in injection moulding machines. Wear 249, 372–378 (2001)

    Article  Google Scholar 

  18. S. Rossi, F. Chini, G. Straffelini, P.L. Bonora, F. Moschini, A. Stampali, Corrosion protection properties of Nickel/PTFE, Phosphate/MoS2 and bronze/PTFE coatings applied to improve the wear resistance of carbon steel. Surf. Coat. Technol. 173, 235–242 (2003)

    Article  Google Scholar 

  19. Ph Hivart, B. Hauw, J. Crampon, J.P. Bricout, Annealing improvement of tribological properties of manganese phosphate coatings. Wear 219, 195–204 (1998)

    Article  Google Scholar 

  20. D.R. Gabe, Hard anodizing—what do we mean by hard? Met. Finish. 100, 52–57 (2002)

    Google Scholar 

  21. L. Rama Krishna, A. Sudha Purnima G. Sundararajan, A comparative study of tribological behaviour of microarc oxidation and hard-anodized coatings. Wear 261, 1095–1101 (2006)

    Google Scholar 

  22. L.H. Chiu, C.F. Yang, W.C. Hsieh, A.S. Cheng, Effect of contact pressure on wear resistance of AISI H13 tool steels with chromium nitride and hard chromium coatings. Surf. Coat. Technol. 154, 282–288 (2002)

    Article  Google Scholar 

  23. K.G. Budinski, The wear resistance of diffusion treated surfaces. Wear 162–164, 757–762 (1993)

    Article  Google Scholar 

  24. J.D.B. De Mello, J.L. Goncalves, H.L. Costa, Influence of surface texturing and hard chromium coating on the wear of steels used in cold rolling mill rolls. Wear 302, 1295–1309 (2013)

    Article  Google Scholar 

  25. M.A. Juneghani, M. Farzam, H. Zohdirad, Wear and corrosion resistance and electroplating characteristics of electrodeposited Cr-SiC nano-composite coatings. Trans. Nonferrous Met. Soc. China 23, 1993–2001 (2013)

    Article  Google Scholar 

  26. J. Simao, D.K. Aspinwall, Hard chromium plating of EDT mill work rolls. J. Mater. Process. Technol. 92–93, 281–287 (1999)

    Article  Google Scholar 

  27. D.T. Gawne, U. Ma, Structure and wear of electroless nickel coatings. Mater. Sci. Technol. 3, 228–238 (1987)

    Article  Google Scholar 

  28. P. Sahoo, S.K. Das, Tribology of electroless nickel coatings—a review. Mater. Des. 32, 1760–1775 (2011)

    Article  Google Scholar 

  29. Y.W. Riddle, T.O. Bailer, Friction and wear reduction via an Ni-B electroless bath coating for metal alloy. J. Met. 57, 40–45 (2005)

    Google Scholar 

  30. G. Straffelini, D. Colombo, A. Molinari, Surface durability of electroless Ni-P composite deposits. Wear 236, 179–188 (1999)

    Article  Google Scholar 

  31. Y.S. Huang, X.T. Zeng, I. Annergren, F.M. Liu, Development of electroless NiP-PTFE-SiC composite coating. Surf. Coat. Technol. 167, 207–211 (2003)

    Article  Google Scholar 

  32. B. Bushan, Introduction to Tribology (Wiley, New York, 2002)

    Google Scholar 

  33. P. Hollman, A. Alahelisten, M. Olsson, S. Hogmark, Residual stress, Young’s modulus and fracture stress of hot flame deposited diamond. Thin Solid Films 270, 137–142 (1995)

    Article  Google Scholar 

  34. K. Holmberg, H. Ronkainen, A. Laukkanen, K. Wallin, S. Hogmark, S. JAcobson, U. Wiklund, R.M. Souza, P. Stahle, Residual stresses in TiN, DLC and MoS2 coated surfaces with regard to their tribological fracture behavior. Wear 267, 2142–2156 (2009)

    Google Scholar 

  35. G. Straffelini, P. Scardi, A. Molinari, R. Polini, Characterization and sliding behaviour of HF CVD diamond coatings on WC-Co. Wear 249, 461–472 (2001)

    Article  Google Scholar 

  36. R. Ramadoss, N. Kumar, R. Pandian, S. Dash, T.R. Ravindran, Tribological properties and deformation mechanism of TiAlN coating sliding with various counterbodies. Tribol. Int. 66, 143–149 (2013)

    Article  Google Scholar 

  37. J.C.A. Batista, C. Godoy, A. Matthews, Micro-scale abrasive wear testing of duplex and non-duplex (single layerd) PVD (Ti, Al)N, TiN and Cr-N coatings. Tribol. Int. 35, 363–372 (2002)

    Article  Google Scholar 

  38. T. Sudaprasert, P.H. Shipway, D.G. McCartnay, Sliding wear behaviour of HVOF sprayed WC-Co coatings deposited with both gas-fuelled and liquid-fuelled systems. Wear 255, 943–949 (2003)

    Article  Google Scholar 

  39. L. Fedrizzi, S. Rossi, R. Cristel, P.L. Bonora, Corrosion and wear behaviour of HVOF cermet coatings used to replace hard chromium. Electrochim. Acta 49, 2803–2814 (2004)

    Article  Google Scholar 

  40. G.M. La Vecchia, F. Mor, G. Straffelini, D. Doni, Microstructure and sliding wear behaviour of thermal spray carbide coatings. Int. J. Powder Metall. 35, 37–46 (1999)

    Google Scholar 

  41. L. Valentinelli, A. Loreto, T. Valente, L. Fedrizzi, Tribological behaviour at high temperature of cermet coatings, Atti del 7° Convegno AIMAT, Ancona, 29 giugno-2 luglio (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Straffelini .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Straffelini, G. (2015). Surface Engineering for Tribology. In: Friction and Wear. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-05894-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05894-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05893-1

  • Online ISBN: 978-3-319-05894-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics