Advertisement

A Review on Age Identification Techniques for Non-human in Forensic Anthropology

  • Nur A. Sahadun
  • Mohammed R. A. Kadir
  • Habibollah Haron
Part of the Studies in Computational Intelligence book series (SCI, volume 555)

Abstract

Forensic Anthropology is an application of anthropology techniques to modern human and non-human remains for law enforcement. In general, the forensic anthropologist provides a basic biological profile of the decedent to aid in identification. This biological profile usually includes age, sex, height, ancestry, and postmortem interval. Identifications of the age for un-known birth date non-human provide useful information for variety of circumstances. A comparison of different techniques for age determination on non-human for certain species with regard to their accuracy based on published original data can be performed only with severe limitations. Once the age is known, it can be used for further information on determination gender, ancestry, stature, knowing the time and cause of death of corpse. This paper presents a review on techniques in identifying age for non-human cases regardless the specimen of data. Focusing only on age determination, it covers all range of techniques from physical maturity measurement on growth, development of dentition, development of lenses protein, mathematical computation and soft computing and artificial intelligence approach. There are five aspects in age determination will be discussed namely issues and problems, parameter in measurement, specimen, techniques used, and methodology. The paper is ended with conclusion that leads to a proposal on new trend and techniques to determine age for non-human in forensic anthropology.

Keywords

Forensic Anthropology Age Determination Skeletal Remains non-human dentition lenses protein Behavior Soft-Computing Techniques 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bagi, C.M., Berryman, E., Moalli, M.R.: Comparative bone anatomy of commonly used laboratory animals: implications for drug discovery. Comparative Medicine 61(1), 76 (2011)Google Scholar
  2. 2.
    Bolanos, M.V., Manrique, M.C., Bolanos, M.J., Bri-ones, M.T.: Approaches to chronological age as-sessment based on dental calcification. Forensic Science International 110(2), 97–106 (2000)Google Scholar
  3. 3.
    Andrews, A.H.: The relationship of bovine mandibular cheek tooth development to age determined by post-mortem radiographic examination of cattle aged between 12 and 24 months. Journal of Agricultural Science 98, 109–117 (1982)Google Scholar
  4. 4.
    Imaizumi, K., Saitoh, K., Sekiguchi, K., Yoshino, M.: Identification of fragmented bones based on an-thropological and DNA analyses: case report. Legal Medicine (Tokyo, Japan) 4(4), 251–256 (2002)Google Scholar
  5. 5.
    Boy, C.C., Dellabianca, N., Goodall, R.N.P., Schiavini, A.C.M.: Age and growth in Peale’s dolphin (Lagenorhynchus australis) in subantarctic waters off southern South America. Mammalian Biology - Zeitschrift für Säugetierkunde 76(5), 634–639 (2011)Google Scholar
  6. 6.
    McGrory, S., Svensson, E.M., Götherström, A., Mulville, J., Powell, A.J., Collins, M.J., O’Connor, T.P.: A novel method for integrated age and sex determination from archaeological cattle mandibles. Journal of Archaeological Science 39(10), 3324–3330 (2012)Google Scholar
  7. 7.
    Cuozzo, F.P., Sauther, M.L.: Severe wear and tooth loss in wild ring-tailed lemurs (Lemur catta): a function of feeding ecology, dental structure, and individual life history. Journal of Human Evolution 51(5), 490–505 (2006)Google Scholar
  8. 8.
    Gavan, J.A., Hutchinson, T.C.: The problem of age estimation: a study using rhesus monkeys (Macaca mulatta). American Journal of Physical Anthropology 38(1), 69–81 (1973)Google Scholar
  9. 9.
    Bowen, W.D., Sergeant, D.E., Øritsland, T.: Validation of age estimation in the harp seal, Phoca groenlandica, using dentinal annuli. Canadian Journal of Fisheries and Aquatic Sciences 40(9), 1430–1441 (1983)Google Scholar
  10. 10.
    Gee, K.L., Holman, J.H., Causey, M.K., Rossi, A.N., Armstrong, J.B.: Aging white-tailed deer by tooth replacement and wear: a critical evaluation of a time-honored technique. Wildlife Society Bulletin, 387–393 (2002)Google Scholar
  11. 11.
    Gandal, C.P.: Age Determination In Mammals. Transactions of the New York Academy of Sciences 16(6 series II), 312–314 (1954)Google Scholar
  12. 12.
    Ramsthaler, F., Kreutz, K., Verhoff, M.A.: Accuracy of metric sex analysis of skeletal remains using Fordisc® based on a recent skull collection. International Journal of Legal Medicine 121(6), 477–482 (2007)Google Scholar
  13. 13.
    Augusteyn, R.C., Coulson, G., Landman, K.A.: Determining kangaroo age from lens protein content. Australian Journal of Zoology 51(5), 485–494 (2004)Google Scholar
  14. 14.
    Kohn, L.A.P., Olson, P., Cheverud, J.M.: Age of epiphyseal closure in tamarins and marmosets. American Journal of Primatology 41(2), 129–139 (1997)Google Scholar
  15. 15.
    Barlow, J., Boveng, P.: Modeling age‐specific mortality for marine mammal populations. Marine Mammal Science 7(1), 50–65 (1991)Google Scholar
  16. 16.
    Lubinski, P.M.: Estimating age and season of death of pronghorn antelope (Antilocapra americana Ord) by means of tooth eruption and wear. International Journal of Osteoarchaeology 11(3) (2001)Google Scholar
  17. 17.
    Schmitt, A.: Age‐at‐death assessment using the os pubis and the auricular surface of the ilium: a test on an identified Asian sample. International Journal of Osteoarchaeology 14(1), 1–6 (2004)Google Scholar
  18. 18.
    Archie, E.A., Morrison, T.A., Foley, C.A.H., Moss, C.J., Alberts, S.C.: Domi-nance rank relationships among wild female African elephants, Loxodonta africana. Animal Behaviour 71(1), 117–127 (2006)Google Scholar
  19. 19.
    Buk, Z., Kordik, P., Bruzek, J., Schmitt, A., Snorek, M.: The age at death assess-ment in a multi-ethnic sample of pelvic bones using nature-inspired data mining methods. Forensic Science International 220(1-3), 294.e1–294.e9 (2012)Google Scholar
  20. 20.
    Bull, R.K., Edwards, P.D., Kemp, P.M., Fry, S., Hughes, I.A.: Bone age assess-ment: a large scale comparison of the Greulich and Pyle, and Tanner and Whitehouse (TW2) methods. Archives of Disease in Childhood 81(2), 172–173 (1999)Google Scholar
  21. 21.
    Gibson, P.M.: The application of hybrid neural network models to estimate age of do-mestic ungulates. International Journal of Osteoarchaeology 3(1), 45–48 (1993)Google Scholar
  22. 22.
    Hans, D., Arlot, M.E., Schott, A.M., Roux, J.P., Kotzki, P.O., Meunier, P.J.: Do ultrasound measurements on the os calcis reflect more the bone microarchitecture than the bone mass?: a two-dimensional histomorphometric study. Bone 16(3), 295–300 (1995)Google Scholar
  23. 23.
    Havill, L.: Bone mineral density reference standards in adult baboons (Papio hama-dryas) by sex and age. Bone 33(6), 877–888 (2003)Google Scholar
  24. 24.
    Rozenblut, B., Ogielska, M.: Development and growth of long bones in European water frogs (Amphibia: Anura: Ranidae), with remarks on age determination. Journal of Morphology 265(3), 304–317 (2005)Google Scholar
  25. 25.
    Stander, P.E.: Field age determination of leopards by tooth wear. African Journal of Ecology 35(2), 156–161 (1997)Google Scholar
  26. 26.
    Stauber, M., Müller, R.: Age-related changes in trabecular bone microstructures: global and local morphometry. Osteoporosis International: a Journal Established as Result of Cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 17(4), 616–626 (2006)Google Scholar
  27. 27.
    du Jardin, P., Ponsaillé, J., Alunni-Perret, V., Quatrehomme, G.: A comparison between neural network and other metric methods to determine sex from the upper femur in a modern French population. Forensic Science International 192(1-3), 127.e1–127.e6 (2009)Google Scholar
  28. 28.
    Castillo, R.F., Ruiz, M.D.C.L.: Assessment of age and sex by means of DXA bone densitometry: ap-plication in forensic anthropology. Forensic Science International 209(1-3), 53–58 (2011)Google Scholar
  29. 29.
    Wada, K., Ohtaishi, N., Hachiya, N.: Determination of Age in the Japanese Monkey from Growth Layers in the Dental Cementum 19, 775–784 (1978)Google Scholar
  30. 30.
    Kranioti, E., Paine, R.: Forensic anthropology in Europe: an assessment of current status and application. J. Anthropol. Sci. 89, 71–92 (2011)Google Scholar
  31. 31.
    Cattaneo, C.: Forensic anthropology in the new millennium 165, 185–193 (2007)Google Scholar
  32. 32.
    Grabherr, S., Cooper, C., Ulrich-Bochsler, S., Uldin, T., Ross, S., Oesterhelweg, L., Thali, M.J.: Estimation of sex and age of “virtual skeletons”–a feasibility study. European Radiology 19(2), 419–429 (2009)CrossRefGoogle Scholar
  33. 33.
    Zeybek, G., Ergur, I., Demiroglu, Z.: Stature and gender estimation using foot measurements. Forensic Science International 181(1), 54-e1 (2008)Google Scholar
  34. 34.
    Bruning-Fann, C.S., Schmitt, S.M., Fitzgerald, S.D., Fierke, J.S., Friedrich, P.D., Kaneene, J.B., Muzo, D.P.: Bovine tuberculosis in free-ranging carnivores from Michigan. Journal of Wildlife Diseases 37(1), 58–64 (2001)CrossRefGoogle Scholar
  35. 35.
    Sakuma, A., Ishii, M., Yamamoto, S., Shimofusa, R., Kobayashi, K., Motani, H., Iwase, H.: Application of Postmortem 3D‐CT Facial Reconstruction for Personal Identi-fication*. Journal of Forensic Sciences 55(6), 1624–1629 (2010)CrossRefGoogle Scholar
  36. 36.
    Tocheri, M.W., Molto, J.E.: Aging fetal and juvenile skeletons from Roman Period Egypt using basiocciput osteometrics. International Journal of Osteoarchaeology 12(5), 356–363 (2002)CrossRefGoogle Scholar
  37. 37.
    Craig, J.G., Cody, D.D., Van Holsbeeck, M.: The distal femoral and proximal tibial growth plates: MR imaging, three-dimensional modeling and estimation of area and volume. Skeletal Radiology 33(6), 337–344 (2004)CrossRefGoogle Scholar
  38. 38.
    Macdonald, H.M., Nishiyama, K.K., Kang, J., Hanley, D.A., Boyd, S.K.: Age‐related patterns of trabecular and cortical bone loss differ between sexes and skele-tal sites: A population‐based HR‐pQCT study. Journal of Bone and Mineral Research 26(1), 50–62 (2011)CrossRefGoogle Scholar
  39. 39.
    Rösing, F.W., Graw, M., Marré, B., Ritz-Timme, S., Rothschild, M.A., Rötzscher, K., Geserick, G.: Recommendations for the forensic diagnosis of sex and age from skeletons. HOMO-Journal of Comparative Human Biology 58(1), 75–89 (2007)CrossRefGoogle Scholar
  40. 40.
    Tassani, S., Matsopoulos, G.K., Baruffaldi, F.: 3D identification of trabecular bone fracture zone using an automatic image registration scheme: A validation study. Journal of Biomechanics 45(11), 2035–2040 (2012)CrossRefGoogle Scholar
  41. 41.
    Quimby, D.C., Gaab, J.E.: Mandibular dentition as an age indicator in Rocky Mountain elk. The Journal of Wildlife Management 21(4), 435–451 (1957)CrossRefGoogle Scholar
  42. 42.
    Pietka, E., McNitt-Gray, M.F., Kuo, M.L., Huang, H.K.: Computer-assisted pha-langeal analysis in skeletal age assessment. IEEE Transactions on Medical Imaging 10(4), 616–620 (1991)CrossRefGoogle Scholar
  43. 43.
    Poole, W.E., Carpenter, S.M., Wood, J.T.: Growth of grey kangaroos and the reliability of age determination from body measurements. I. The eastern grey kangaroo, Macropus giganteus. Australian Wildlife Research 9, 9–20 (1982)CrossRefGoogle Scholar
  44. 44.
    Kirkpatrick, T.H.: Studies of the Macropodidae in Queensland. 2. Age estimation in the grey kangaroo, the red kangaroo, the eastern wallaroo and the red-necked wallaby, with notes on dental abnormalities. Queensland Journal of Agricultural and Animal Sciences 22, 301–317 (1965)Google Scholar
  45. 45.
    Kirkpatrick, T.H.: Studies of the Macropodidae in Queensland. 8. Age estimation in the red kangaroo (Megaleia rufa (Desmarest)). Queensland Journal of Agricultural and Animal Sciences 27, 461–462 (1970)Google Scholar
  46. 46.
    Evans, K.E., Harris, S.: Adolescence in male African elephants, Loxodonta afri-cana, and the im-portance of sociality. Animal Behaviour 76(3), 779–787 (2008)CrossRefGoogle Scholar
  47. 47.
    Castanet, J., Francillon-Vieillot, H., Meunier, F.J., De Ricqles, A.: Bone and lndividual Aging. Bone: Bone Growth-B 7, 245 (1993)Google Scholar
  48. 48.
    Steele, T.E., Weaver, T.D.: Refining the Quadratic Crown Height Method of age estimation: do elk teeth wear quadratically with age? Journal of Archaeological Science 39(7), 2329–2334 (2012)CrossRefGoogle Scholar
  49. 49.
    Hamlin, K.L., Pac, D.F., Sime, C.A., DeSimone, R.M., Dusek, G.L.: Evaluating the accuracy of ages obtained by two methods for Montana ungulates. Journal of Wildlife Management 64, 441e449 (2000)Google Scholar
  50. 50.
    Ding, M., Odgaard, A., Hvid, I.: Accuracy of cancellous bone volume fraction measured by micro-CT scanning. Journal of Biomechanics 32(3), 323–326 (1999)CrossRefGoogle Scholar
  51. 51.
    Thomas, C.D.L., Stein, M.S., Feik, S.A., Wark, J.D., Clement, J.G.: Determination of age at death using combined morphology and histology of the femur. Journal of Anatomy 196(3), 463–471 (2000)CrossRefGoogle Scholar
  52. 52.
    Corsini, M.-M., Schmitt, A., Bruzek, J.: Aging process variability on the human skeleton: artificial network as an appropriate tool for age at death assessment. Forensic Science International 148(2-3), 163–167 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nur A. Sahadun
    • 1
  • Mohammed R. A. Kadir
    • 2
  • Habibollah Haron
    • 1
  1. 1.Faculty of ComputingUniversiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.Faculty of BioScience and Medical EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations