Computational Methods for the Analysis of Footwear Impression Evidence

  • Sargur N. Srihari
  • Yi Tang
Part of the Studies in Computational Intelligence book series (SCI, volume 555)


Impressions of footwear are commonly found in crime scenes. Yet they are not routinely used as evidence due to: (i) the wide variability and quality of impressions, and (ii) the large number of footwear outsole designs which makes their manual comparison time-consuming and difficult. Computational methods hold the promise of better use of footwear evidence in investigations and also in providing assistance for court testimony. This paper begins with a comprehensive survey of existing methods, followed by identifying several gaps in technology. They include methods to improve image quality, computing features for comparison, measuring the degree of similarity, retrieval of closest prints from a database and determining the degree of uncertainty in identification. New algorithms for each of these problems are proposed. An end-to-end system is proposed where : (i) the print is represented by an attribute relational graph of straight edges and ellipses, (ii) a distance measure based on the earth-mover distance, (iii) clustering to speed-up database retrieval, and (iv) uncertainty evaluation based on likelihoods. Retrieval performance of the proposed design with real crime scene images is evaluated and compared to that of previous methods. Suggestions for further work and implications to the justice system are given.


Footwear Impression evidence Computational forensics Image similarity Crime scene images 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bodziak, W.: Footwear Impression Evidence Detection, Recovery and Examination, 2nd edn. CRC Press (2000)Google Scholar
  2. 2.
    Stone, R.S.: Footwear examinations: Mathematical probabilities of theoretical individual characteristics. Journal of Forensic Identification 56, 577–599 (2006)Google Scholar
  3. 3.
    Geradts, Z., Keijzer, J.: The image-database REBEZO for shoeprints with developments on automatic classification of shoe outsole designs. Forensic Science International 82, 21–31 (1996)CrossRefGoogle Scholar
  4. 4.
    Alexander, A., Bouridane, A., Crookes, D.: Automatic classification and recognition of shoeprints. In: Proc. Seventh Internationl Conference Image Processing and Its Applications, vol. 2, pp. 638–641 (1999)Google Scholar
  5. 5.
    Girod, A.: Computerized classification of the shoeprints of burglar’s shoes. Forensic Science International 1, 59–65 (1982)Google Scholar
  6. 6.
    Bouridane, A., Alexander, A., Nibouche, M., Crookes, D.: Application of fractals to the detection and classification of shoeprints. In: Proceedings International Conference Image Processing, vol. 1, pp. 474–477 (2000)Google Scholar
  7. 7.
    Sawyer, N.: SHOE-FIT: A computerised shoe print database. In: Proc. European Convention on Security and Detection (1995)Google Scholar
  8. 8.
    Ashley, W.: What shoe was that? the use of computerised image database to assist in identification. Forensic Science Int. 82(1), 7–20 (1996)CrossRefGoogle Scholar
  9. 9.
    Foster, Freeman: Solemate (2010),
  10. 10.
    Bouridane, A.: Imaging for Forensics and Security: From Theory to Practice, 1st edn. Springer (2009)Google Scholar
  11. 11.
    de Chazal, P., Flynn, J., Reilly, R.B.: Automated processing of shoeprint images based on the Fourier transform for use in forensic science. IEEE Trans. Pattern Anal. Mach. Intell 27, 341–350 (2005)CrossRefGoogle Scholar
  12. 12.
    Zhang, L., Allinson, N.: Automatic shoeprint retrieval system for use in forensic investigations. In: UK Workshop on Computational Intelligence (2005)Google Scholar
  13. 13.
    Pavlou, M., Allinson, N.M.: Automatic extraction and classification of footwear patterns. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 721–728. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Crookes, D., Bouridane, A., Su, H., Gueham, M.: Following the footsteps of others: Techniques for automatic shoeprint classification. In: Second NASA/ESA Conference on Adaptive Hardware and Systems, pp. 67–74 (2007)Google Scholar
  15. 15.
    Gueham, M., Bouridane, A., Crookes, D.: Automatic classification of partial shoeprints using advanced correlation filters for use in forensic science. In: International Conference on Pattern Recognition, pp. 1–4 (2008)Google Scholar
  16. 16.
    Patil, P.M., Kulkarni, J.V.: Rotation and intensity invariant shoeprint matching using gabor transform with application to forensic science. Pattern Recognition 42, 1308–1317 (2009)CrossRefGoogle Scholar
  17. 17.
    Dardi, F., Cervelli, F., Carrato, S.: A texture based shoe retrieval system for shoe marks of real crime scenes. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716, pp. 384–393. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Tang, Y., Srihari, S.N., Kasiviswanthan, H.: Similarity and clustering of footwear prints. In: IEEE Symposium on Foundations and Practice of Data Mining (GrC 2010). IEEE Computer Society Press (2010)Google Scholar
  19. 19.
    Tang, Y., Srihari, S.N.: Ellipse detection using sampling constraints. In: Proc. IEEE Int. Conf. Image Proc., IEEE Computer Society Press (2011)Google Scholar
  20. 20.
    Mikkonen, S., Astikainenn, T.: Database classification system for shoe sole patterns - identification of partial footwear impression found at a scene of crime. Journal of Forensic Science 39(5), 1227–1236 (1994)Google Scholar
  21. 21.
    Huynh, C., de Chazal, P., McErlean, D., Reilly, R., Hannigan, T., Fleud, L.: Automatic classification of shoeprints for use in forensic science based on the Fourier transform. In: Proc. 2003 International Conference Image Processing, vol. 3, pp. 569–572 (2003)Google Scholar
  22. 22.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. on Pattern Analysis and Machine Intel. 27, 1615–1630 (2005)CrossRefGoogle Scholar
  23. 23.
    Ghouti, L., Bouridane, A., Crookes, D.: Classification of shoeprint images using directional filter banks. In: International Conference on Visual Information Engineering, pp. 167–173 (2006)Google Scholar
  24. 24.
    Su, H., Crookes, D., Bouridane, A.: Thresholding of noisy shoeprint images based on pixel context. Pattern Recognition Letters 28(2), 301–307 (2007)CrossRefGoogle Scholar
  25. 25.
    Sun, W., Taniar, D., Torabi, T.: Image mining: A case for clustering shoe prints. International Journal of Information Technology and Web Engineering 3, 70–84 (2008)CrossRefGoogle Scholar
  26. 26.
    AlGarni, G., Hamiane, M.: A novel technique for automatic shoeprint image retrieval. Forensic Science International 181, 10–14 (2008)CrossRefGoogle Scholar
  27. 27.
    Xiao, R., Shi, P.-f.: Computerized matching of shoeprints based on sole pattern. In: Srihari, S.N., Franke, K. (eds.) IWCF 2008. LNCS, vol. 5158, pp. 96–104. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Jingl, M.Q., Ho, W.J., Chen, L.H.: A novel method for shoeprints recognition and classification. In: International Conference on Machine Learning and Cybernetics, vol. 5, pp. 2846–2851 (2009)Google Scholar
  29. 29.
    Nibouche, O., Bouridane, A., Gueham, M., Laadjel, M.: Rotation invariant matching of partial shoeprints. In: International Machine Vision and Image Processing Conference, pp. 94–98 (2009)Google Scholar
  30. 30.
    Cervelli, F., Dardi, F., Carrato, S.: Comparison of footwear retrieval systems for synthetic and real shoe marks. In: Proc. Sixth Intl. Symp. Image and Signal Processing and Analysis, Salzburg, Austria, pp. 684–689 (2009)Google Scholar
  31. 31.
    Dardi, F., Cervelli, F., Carrato, S.: A combined approach for footwear retrieval of crime scene shoe marks. In: Proc. ICDP 2009, Third International Conference on Imaging for Crime Detection and Prevention, Paper No. P09, London, UK (2009)Google Scholar
  32. 32.
    Wang, R., Hong, W., Yang, N.: The research on footprint recognition method based on wavelet and fuzzy neural network. In: International Conference on Hybrid Intelligent Systems, pp. 428–432 (2009)Google Scholar
  33. 33.
    Otsu, N.: A threshold selection method from gray level histogram. IEEE Transaction on Systems, Man and Cybernetics 9, 62–66 (1979)CrossRefGoogle Scholar
  34. 34.
    Ramakrishnan, V., Srihari, S.N.: Extraction of shoeprint patterns from impression evidence using conditional random fields. In: Proceedings of International Conference on Pattern Recognition, Tampa, FL. IEEE Computer Society Press (2008)Google Scholar
  35. 35.
    Koller, D., Friedman, N.: Probabilistic Graphical Models. MIT Press (2009)Google Scholar
  36. 36.
    Shetty, S., Srinivasan, H., Beal, M., Srihari, S.: Segmentation and labeling of documents using conditional random fields. In: Document Recognition and Retrieval XIV, vol. 6500, pp. 65000U–1 (2007)Google Scholar
  37. 37.
    Kumar, S., Hebert, M.: Discriminative fields for modeling spatial dependencies in natural images. In: Neural Information Processing Systems, NIPS (2003)Google Scholar
  38. 38.
    Wallach, H.: Efficient training of conditional random fields. Master’s thesis, University of Edinburgh (2002)Google Scholar
  39. 39.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)CrossRefGoogle Scholar
  40. 40.
    Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using MATLAB, 1st edn. Prentice Hall (2003)Google Scholar
  41. 41.
    Rui, Y., Huang, S., Chang, S.: Image retrieval: Current techniques, promising directions, and open issues. Journal of Visual Communication and Image Representation 10, 39–62 (1999)CrossRefGoogle Scholar
  42. 42.
    Srihari, S.N., Huang, C., Srinivasan, H.: On the discriminability of the handwriting of twins. Journal of Forensic Sciences 53(2), 430–446 (2008)CrossRefGoogle Scholar
  43. 43.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  44. 44.
    Hough, P.: Machine analysis of bubble chamber pictures. In: International Conference on High Energy Accelerators and Instrumentation, CERN (1959)Google Scholar
  45. 45.
    Srihari, S.N., Govindaraju, V.: Analysis of textual images using the Hough transform. Machine Vision and Applications 2, 141–153 (1989)CrossRefGoogle Scholar
  46. 46.
    Goulermas, J., Liatsis, P.: Incorporating gradient estimations in a circle-finding probabilistic hough transform. Pattern Analysis and Applications 26, 239–250 (1999)CrossRefGoogle Scholar
  47. 47.
    Wu, W.Y., Wang, M.J.J.: Elliptical object detection by using its geometric properties. Pattern Recognition 26, 1499–1509 (1993)CrossRefGoogle Scholar
  48. 48.
    McLaughlin, R.: Randomized Hough transform: better ellipse detection. IEEE TENCON-Digital Signal Processing Applications 1, 409–414 (1996)CrossRefGoogle Scholar
  49. 49.
    Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision. Addison Wesley (1992)Google Scholar
  50. 50.
    Bunke, H., Irniger, C., Neuhaus, M.: Graph matching: Challenges and potential solutions. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 1–10. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  51. 51.
    Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics 13, 353–362 (1983)CrossRefMATHGoogle Scholar
  52. 52.
    Bunke, H., Messmer, B.T.: Efficient attributed graph matching and its application to image analysis. In: Proceedings of the 8th International Conference on Image Analysis and Processing, pp. 45–55 (1995)Google Scholar
  53. 53.
    Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision 40, 99–121 (2000)CrossRefMATHGoogle Scholar
  54. 54.
    Hillier, F.S., Liebermann, G.J.: Introduction to Mathematical Programming, 2nd edn. McGraw-Hill (1995)Google Scholar
  55. 55.
    Kim, D.H., Yun, I.D., Lee, S.U.: Attributed relational graph matching algorithm based on nested assignment structure. Pattern Recognition 43, 914–928 (2010)CrossRefMATHGoogle Scholar
  56. 56.
    Pelillo, M., Siddiqi, K., Zucker, S.W.: Many-to-many matching of attributed trees using association graphs and game dynamics. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 583–593. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  57. 57.
    Smith, E., Szidarovszky, F., Karnavas, W., Bahill, A.: Sensitivity analysis, a powerful system validation technique. The Open Cybernetics and Systemics Journal 2, 39–56 (2008)CrossRefMathSciNetGoogle Scholar
  58. 58.
    Aldenderfer, M., Blashfield, R.: Cluster Analysis. SAGE (1984)Google Scholar
  59. 59.
    Mikkonen, S., Suominen, V., Heinonen, P.: Use of footwear impressions in crime scene investigations assisted by computerised footwear collection system. Forensic Science International 82(1), 67–79 (1996)CrossRefGoogle Scholar
  60. 60.
    Basu, S., Banerjee, A., Mooney, R.J.: Semi-supervised clustering by seeding. In: Proc. of the Nineteenth International Conference on Machine Learning, pp. 27–34 (2002)Google Scholar
  61. 61.
    Nixon, M., Aguado, A.: Pattern Extraction and Image Processing. Elsevier Science (2002)Google Scholar
  62. 62.
    Aitken, C., Taroni, F.: Statistics and the Evaluation of Evidence for Forensic Scientists. Wiley (2004)Google Scholar
  63. 63.
    Evett, I.: Towards a uniform framework for reporting opinions in forensic science casework. Science and Justice 38(3), 198–202 (1998)CrossRefGoogle Scholar
  64. 64.
    Evett, I., Lambert, J., Buckleton, J.: A Bayesian approach to interpreting footwear marks in forensic casework. Science and Justice 38(4), 241–247 (1998)CrossRefGoogle Scholar
  65. 65.
    Biedermann, A., Taroni, F.: Inadequacies of posterior probabilities for the assessment of scientific evidence. Law, Probability and Risk 4, 89–114 (2005)CrossRefGoogle Scholar
  66. 66.
    Tang, Y., Srihari, S.N.: Likelihood ratio estimation in forensic identification using similarity and rarity. Pattern Recognition 47(3), 945–958 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer Science and Engineering, Center of Excellence for DocumentThe State University of New York SUNYNew YorkUSA

Personalised recommendations