Advertisement

Integrating Computational Methods for Forensic Identification of Drugs by TLC, GC and UV Techniques

  • Francisco José Silva Mata
  • Dania Porro Muñoz
  • Diana Porro Muñoz
  • Noslen Hernández
  • Isneri Talavera Bustamante
  • Yoanna Martínez-Díaz
  • Lázaro Bustio Martínez
Part of the Studies in Computational Intelligence book series (SCI, volume 555)

Abstract

The combination of computational methods and the techniques of Thin Layer Chromatography (TLC), Ultraviolet (UV) and Gas Chromatography (GC), brings significant improvements in the speed and accuracy of the analysis and identification of drugs of abuse. In the case of the TLC technique, the processing is fully automatic, through a sequence of algorithms that are run on the images of the resulting plates. By means of this process, the spots corresponding to each substance are characterized with the determination of the respective value of the retardation factor (Rf), and the descriptions of their shape and color. The identification of a sample is made by calculating its dissimilarity with respect to the previously stored patterns. During this process, the quality of the plate is also evaluated. For the analysis of Ultraviolet data, the computation of dissimilarities is performed by taking into account the shape of the spectra. The analyzed sample will take the class of the closest pattern. Spectra are previously standardized in order to eliminate the variation of the slope of the curves caused by the dispersion and the variation in the particle size. With this purpose, the standard normal variate pre-processing method is applied. When using the GC technique, the identification process is based on the detection of peaks that belong to each drug according to their retention times. The drugs are identified by comparing both, the absolute and the relative retention times (with respect to two internal standards) of the detected peaks, with those of the patterns stored in the system.

Keywords

Drug identification Thin Layer Chromatography Ultraviolet Gas Chromatography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adobe camera raw y adobe lightroom, http://www.copiasxl.com/calacr.html
  2. 2.
    Peak detection using matlab, http://www.billauer.co.il/peakdet.html
  3. 3.
    Barnes, R., Dhanoa, M., Lister, S.: Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied Spectroscopy 43(5), 772–777 (1989)CrossRefGoogle Scholar
  4. 4.
    Bradski, G., Kaehler, A.: Learning OpenCV: Computer vision with the OpenCV library. O’reilly (2008)Google Scholar
  5. 5.
    Fearn, T., Riccioli, C., Garrido-Varo, A., Guerrero-Ginel, J.: On the geometry of snv and msc. Chemometrics and Intelligent Laboratory Systems 96(1), 22–26 (2009)CrossRefGoogle Scholar
  6. 6.
    Flusser, J., Zitova, B., Suk, T.: Moments and Moment Invariants in Pattern Recognition. Wiley Publishing (2009)Google Scholar
  7. 7.
    Gonzalez, R.C., Wood, R.E.: Digital Image Processing, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2001) ISBN:0201180758Google Scholar
  8. 8.
    Hahn-Deinstrop, E.: Applied thin-layer chromatography: best practice and avoidance of mistakes. WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim (2007)Google Scholar
  9. 9.
    Hess, A.: Digitally enhanced thin-layer chromatography: an inexpensive, new technique for qualitative and quantitative analysis. Journal of Chemical Education 84(5), 842–847 (2007)CrossRefGoogle Scholar
  10. 10.
    Komsta, L., Skibinski, R., Grech-Baran, M., Galaszkiewicz, A.: Multivariate comparison of drugs uv spectra by hierarchical cluster analysis-comparison of different dissimilarity functions. In: Annales Universitaits Marie Curie-Sklodowska, Polonia, vol. 20, pp. 2–13 (2007)Google Scholar
  11. 11.
    Kosir, A., Tasic, J.: Pyramid segmentation parameters estimation based on image total variation. In: EUROCON. Computer as a Tool. The IEEE Region 8, vol. 2, pp. 179–183 (2003)Google Scholar
  12. 12.
    Li, J., Brynn-Hibbert, D., Fuller, S., Vaugh, G.: A comparative study of point-to-point algorithms for matching spectra. Chemometrics and Intelligent Laboratory Systems 82(1-2), 50–58 (2006)CrossRefGoogle Scholar
  13. 13.
    Lillsunde, P., Korte, T.: Comprehensive drug screening in urine using solid-phase extraction and combined tlc and gc/ms identification. Journal of Analytical Toxicology 15(2), 71–81 (1991)CrossRefGoogle Scholar
  14. 14.
    Marfil, R., Molina-Tanco, L., Bandera, A., Rodriguez, J., Sandoval, F.: Pyramid segmentation algorithms revisited. Pattern Recognition 39(8), 1430–1451 (2006)CrossRefzbMATHGoogle Scholar
  15. 15.
    Moffat, A., Osselton, D., Widdop, B., Clarke, E.: Clarke’s analysis of drugs and poisons: in pharmaceuticals, body fluids and postmortem material. Clarke’s Analysis of Drugs and Poisons. In: Clarke’s Analysis of Drugs and Poisons: In Pharmaceuticals, Body Fluids and Postmortem Material, Pharmaceutical Press (2004)Google Scholar
  16. 16.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1), 62–66 (1979)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Paclik, P., Duin, R.P.W.: Dissimilarity-based classification of spectra: computational issues. Real Time Imaging 9(4), 237–244 (2003)CrossRefGoogle Scholar
  18. 18.
    Porro, D., Duin, R.W., Talavera, I., Hdez, N.: The representation of chemical spectral data for classification. In: Bayro-Corrochano, E., Eklundh, J.-O. (eds.) CIARP 2009. LNCS, vol. 5856, pp. 513–520. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Porro-Muñoz, D., Talavera, I., Duin, R., Hernández, N., Orozco-Alzate, M.: Dissimilarity representation on functional spectral data for classification. Journal of Chemometrics 25(9), 476–486 (2011)CrossRefGoogle Scholar
  20. 20.
    Sajewicz, M., Pietka, R., Pienak, A., Kowalska, T.: Application of thin-layer chromatography to investigate oscillatory instability of the selected profen enantiomers in dichloromethane. Journal of Chromatographic Science 43(10), 542–548 (2005)CrossRefGoogle Scholar
  21. 21.
    Sherma, J., Fried, B.: Handbook of Thin-Layer Chromatography. Chromatographic science. Taylor & Francis (2003)Google Scholar
  22. 22.
    Siek, T., Stradling, C., McCain, M., Mehary, T.: Computer-aided identifications of thin-layer chromatographic patterns in broad-spectrum drug screening. Clinical Chemistry 43(4), 619–626 (1997)Google Scholar
  23. 23.
    Spiegel, M.R., Espadas, J.L.G.: Teoría y problemas de estadística. McGraw-Hill, México (1970)Google Scholar
  24. 24.
    Varmuza, K., Karlovits, M., Demuth, W.: Spectral similarity versus structural similarity: infrared spectroscopy. Analytica Chimica Acta 490(1-2), 313–324 (2003)CrossRefGoogle Scholar
  25. 25.
    Williams, V.: Detección de curvas generales utilizando la transformada rápida de hough. Investig. Pensam. Crit. 2, 03–09 (2004)Google Scholar
  26. 26.
    Zhu, N., Wang, G., Yang, G., Dai, W.: A fast 2d otsu thresholding algorithm based on improved histogram. In: Chinese Conference on Pattern Recognition (CCPR), pp. 1–5 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Francisco José Silva Mata
    • 1
  • Dania Porro Muñoz
    • 1
  • Diana Porro Muñoz
    • 1
  • Noslen Hernández
    • 1
  • Isneri Talavera Bustamante
    • 1
  • Yoanna Martínez-Díaz
    • 1
  • Lázaro Bustio Martínez
    • 1
  1. 1.Advanced Technologies Application Center (CENATAV)La HabanaCuba

Personalised recommendations