Decoupling Inequalities

  • Alexander Drewitz
  • Balázs Ráth
  • Artëm Sapozhnikov
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)


In this chapter we define subclasses of increasing and decreasing events for which the decorrelation inequalities (7.4.2) and (7.4.3) hold with rapidly decaying error term; see Sect. 8.1 and Theorem 8.3. The definition of these events involves a treelike hierarchical construction on multiple scales L n . In Sect. 8.2 we state the decoupling inequalities for a large number of local events; see Theorem 8.5. We prove Theorem 8.5 in Sect. 8.3 by iteratively applying Theorem 8.3. Finally, in Sect. 8.4, using Theorem 8.5 we prove that if the density of certain patterns in \({\mathcal{I}}^{u}\) is small, then it is very unlikely that such patterns will be observed in \({\mathcal{I}}^{u(1\pm \delta )}\) along a long path; see Theorem 8.7. This last result will be crucially used in proving that u ∈ (0, ) in Chap. 9.


Random Interlacements Gaussian Free Field Dyadic Tree Monotonic Effect General Induction Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [11]
    Černý, J., Teixeira, A.Q.: From random walk trajectories to random interlacements. In: Ensaios Matemáticos [Mathematical Surveys], vol. 23. Sociedade Brasileira de Matemática, Rio de Janeiro (2012)Google Scholar
  2. [12]
    Doyle, P.G., Snell, J.L.: Random walks and electric networks. In: Carus Mathematical Monographs, vol. 22. Mathematical Association of America, Washington, DC (1984)Google Scholar
  3. [26]
    Popov, S., Teixeira, A.: Soft local times and decoupling of random interlacements. J. Eur. Math. Soc. (2012). URL
  4. [32]
    Ráth, B., Sapozhnikov, A.: The effect of small quenched noise on connectivity properties of random interlacements. Electron. J. Probab. 18(4), 20 (2013). DOI 10.1214/EJP.v18-2122. URL
  5. [34]
    Rodriguez, P.-F.: Level set percolation for random interlacements and the gaussian free field. Stoch. Proc. Appl. 124(4) 1469–1502 (2014). URL
  6. [41]
    Sznitman, A.S.: Vacant set of random interlacements and percolation. Ann. Math. 171(3), 2039–2087 (2010). DOI 10.4007/annals.2010.171.2039. URL
  7. [44]
    Sznitman, A.S.: Decoupling inequalities and interlacement percolation on \(G \times \mathbb{Z}\). Invent. Math. 187(3), 645–706 (2012). DOI 10.1007/s00222-011-0340-9. URL

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Alexander Drewitz
    • 1
  • Balázs Ráth
    • 2
  • Artëm Sapozhnikov
    • 3
  1. 1.Department of MathematicsColumbia UniversityNew York CityUSA
  2. 2.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  3. 3.Max-Planck Institute of Mathematics in the SciencesLeipzigGermany

Personalised recommendations