Advertisement

Percolation of the Vacant Set

  • Alexander Drewitz
  • Balázs Ráth
  • Artëm Sapozhnikov
Chapter
  • 667 Downloads
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

In this chapter we discuss basic geometric properties of the vacant set \({\mathcal{V}}^{u}\) defined in (5.2.4). We view this set as a subgraph of \({\mathbb{Z}}^{d}\) with edges drawn between any pair of vertices \(x,y \in {\mathcal{V}}^{u}\) with | xy |1 = 1.

Keywords

Infiltration Subgraph Random Interlacements Peierls Argument Rudolf Peierls 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [15]
    Kesten, H.: Aspects of first passage percolation. In: École d’été de probabilités de Saint-Flour, XIV—1984. Lecture Notes in Mathematics, vol. 1180, pp. 125–264. Springer, Berlin (1986). DOI 10.1007/BFb0074919. URL http://dx.doi.org/10.1007/BFb0074919
  2. [16]
    Kingman, J.F.C.: Poisson processes. In: Oxford Studies in Probability, vol. 3. The Clarendon Press Oxford University Press, New York (1993). Oxford Science PublicationsGoogle Scholar
  3. [24]
    Montroll, E.W.: Random walks in multidimensional spaces, especially on periodic lattices. J. Soc. Indust. Appl. Math. 4, 241–260 (1956)CrossRefMathSciNetGoogle Scholar
  4. [25]
    Peierls, R.: On Ising’s model of ferromagnetism. Math. Proc. Camb. Philos. Soc. 32, 477–481 (1936). DOI 10.1017/S0305004100019174. URL http://journals.cambridge.org/article_S0305004100019174
  5. [41]
    Sznitman, A.S.: Vacant set of random interlacements and percolation. Ann. Math. 171(3), 2039–2087 (2010). DOI 10.4007/annals.2010.171.2039. URL http://dx.doi.org/10.4007/annals.2010.171.2039

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Alexander Drewitz
    • 1
  • Balázs Ráth
    • 2
  • Artëm Sapozhnikov
    • 3
  1. 1.Department of MathematicsColumbia UniversityNew York CityUSA
  2. 2.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  3. 3.Max-Planck Institute of Mathematics in the SciencesLeipzigGermany

Personalised recommendations