Advertisement

Random Interlacement Point Process

  • Alexander Drewitz
  • Balázs Ráth
  • Artëm Sapozhnikov
Chapter
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

In this chapter we give the definition of random interlacements at level u as the range of a countable collection of doubly infinite trajectories in \({\mathbb{Z}}^{d}\). This collection will arise from a certain Poisson point process (the random interlacement point process).

Keywords

Point Process Finite Subset Poisson Point Process Simple Random Walk Discrete Time Markov Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [4]
    Alexander Drewitz, B.R., Sapozhnikov, A.: On chemical distances and shape theorems in percolation models with long-range correlations. Preprint (2012). URL http://arxiv.org/abs/1212.2885
  2. [19]
    Li, X., Sznitman, A.S.: Large deviations for occupation time profiles of random interlacements. Probab. Theory Relat. Fields. Preprint (2013). URL http://arxiv.org/abs/1304.7477
  3. [29]
    Procaccia, E.B., Tykesson, J.: Geometry of the random interlacement. Electron. Commun. Probab. 16, 528–544 (2011). DOI 10.1214/ECP.v16-1660. URL http://dx.doi.org/10.1214/ECP.v16-1660
  4. [31]
    Ráth, B., Sapozhnikov, A.: Connectivity properties of random interlacement and intersection of random walks. ALEA Lat. Am. J. Probab. Math. Stat. 9, 67–83 (2012)zbMATHMathSciNetGoogle Scholar
  5. [35]
    Rosen, J.: Intersection local times for interlacements. Stoch. Proc. Appl. (2013). URL http://arxiv.org/abs/1308.3469
  6. [41]
    Sznitman, A.S.: Vacant set of random interlacements and percolation. Ann. Math. 171(3), 2039–2087 (2010). DOI 10.4007/annals.2010.171.2039. URL http://dx.doi.org/10.4007/annals.2010.171.2039
  7. [45]
    Sznitman, A.S.: An isomorphism theorem for random interlacements. Electron. Commun. Probab. 17(9), 1–9 (2012). DOI 10.1214/ECP.v17-1792. URL http://dx.doi.org/10.1214/ECP.v17-1792
  8. [46]
    Sznitman, A.S.: Random interlacements and the Gaussian free field. Ann. Probab. 40(6), 2400–2438 (2012). DOI 10.1214/11-AOP683. URL http://dx.doi.org/10.1214/11-AOP683
  9. [48]
    Sznitman, A.S.: On scaling limits and brownian interlacements. Bull. Braz. Math. Soc. New Series 44(4), 555–592 (2013). Special issue of the Bulletin of the Brazilian Mathematical Society-IMPA 60 yearsGoogle Scholar
  10. [49]
    Teixeira, A.: Interlacement percolation on transient weighted graphs. Electron. J. Probab. 14(54), 1604–1628 (2009). DOI 10.1214/EJP.v14-670. URL http://dx.doi.org/10.1214/EJP.v14-670

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Alexander Drewitz
    • 1
  • Balázs Ráth
    • 2
  • Artëm Sapozhnikov
    • 3
  1. 1.Department of MathematicsColumbia UniversityNew York CityUSA
  2. 2.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  3. 3.Max-Planck Institute of Mathematics in the SciencesLeipzigGermany

Personalised recommendations