Advertisement

Random Walk, Green Function, and Equilibrium Measure

  • Alexander Drewitz
  • Balázs Ráth
  • Artëm Sapozhnikov
Chapter
  • 695 Downloads
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

In this chapter we collect some preliminary facts that we will need in the sequel. In Sect. 1.1 we introduce our basic notation related to subsets of \({\mathbb{Z}}^{d}\) and functions on \({\mathbb{Z}}^{d}\). In Sect. 1.2 we introduce simple random walk on \({\mathbb{Z}}^{d}\) and discuss properties of the Green function in the transient case d ≥ 3. In Sect. 1.3 we discuss the basics of potential theory, introduce the notion of equilibrium measure and capacity, and derive some of their properties.

Keywords

Probability Measure Harmonic Function Green Function Harmonic Measure Electric Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [10]
    Černý, J., Popov, S.: On the internal distance in the interlacement set. Electron. J. Probab. 17(29), 25 (2012). DOI 10.1214/EJP.v17-1936. URL http://dx.doi.org/10.1214/EJP.v17-1936
  2. [17]
    Lawler, G.F.: Intersections of random walks. In: Probability and Its Applications. Birkhäuser Boston Inc., Boston (1991)Google Scholar
  3. [21]
    Lyons, T.: A simple criterion for transience of a reversible Markov chain. Ann. Probab. 11(2), 393–402 (1983). URL http://links.jstor.org/sici?sici=0091-1798(198305)11:2<393:ASCFTO>2.0.CO;2-S&origin=MSN
  4. [22]
    Lyons Russel Peres, Y.: Probability on Trees and Networks. Cambridge University Press. In preparation. Current version available at http://mypage.iu.edu/~rdlyons/
  5. [27]
    Pólya, G.: Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz. Math. Ann. 84(1–2), 149–160 (1921). DOI 10.1007/BF01458701. URL http://dx.doi.org/10.1007/BF01458701
  6. [47]
    Sznitman, A.S.: Topics in occupation times and Gaussian free fields. In: Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2012). DOI 10.4171/109. URL http://dx.doi.org/10.4171/109
  7. [53]
    Windisch, D.: Random walk on a discrete torus and random interlacements. Electron. Commun. Probab. 13, 140–150 (2008). DOI 10.1214/ECP.v13-1359. URL http://dx.doi.org/10.1214/ECP.v13-1359

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Alexander Drewitz
    • 1
  • Balázs Ráth
    • 2
  • Artëm Sapozhnikov
    • 3
  1. 1.Department of MathematicsColumbia UniversityNew York CityUSA
  2. 2.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  3. 3.Max-Planck Institute of Mathematics in the SciencesLeipzigGermany

Personalised recommendations