Skip to main content

Measuring Expert Performance for Serious Games Analytics: From Data to Insights

  • Chapter
Book cover Serious Games Analytics

Part of the book series: Advances in Game-Based Learning ((AGBL))

Abstract

Advances in technology have made it possible to trace players’ actions and behaviors (as user-generated data) within online serious gaming environments for performance measurement and improvement purposes. Instead of a Black box approach (such as pretest/posttest), we can approach serious games as a White box, assessing performance of play-learners by manipulating the performance variables directly. In this chapter, we describe the processes to obtain user-generated gameplay data in situ using serious games for training—i.e., data tracing, cleaning, mining, and visualization. We also examine ways to differentiate expert-novice performances in serious games, including behavior profiling. We introduce a new Expertise Performance Index, based on string similarities that take into account the “course of actions” chosen by experts and compare that to those of the novices. The Expertise Performance Index can be useful as a metric for serious games analytics because it can rank play-learners according to their competency levels in the serious games.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abt, C. C. (1987). Serious games (Reprint). Lanham, MD: University Press of America.

    Google Scholar 

  • Aldrich, C. (2005). Learning by doing: a comprehensive guide to simulations, computer games, and pedagogy in e-learning and other educational experiences. San Francisco: Pfeiffer.

    Google Scholar 

  • Anderson, E. (1957). A semigraphical method for the analysis of complex problems. Proceedings of the National Academy of Sciences of the United States of America, 43(10), 923–927. Retrieved December 12, 2014, from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC528552/

  • Bauer, M. (2002). Using evidence-centered design to align formative and summative assessment. In Proceedings of the Evidence-Centered Design Approach to Creating Diagnostic Assessments (ITS2002) (pp. 87–96).

    Google Scholar 

  • Bellotti, F., Kapralos, B., Lee, K., & Moreno-Ger, P. (2013). User assessment in serious games and technology-enhanced learning. Advances in Human-Computer Interaction, 2013, 2. doi:10.1155/2013/120791.

  • Bellotti, F., Kapralos, B., Lee, K., Moreno-Ger, P., & Berta, R. (2013). Assessment in and of serious games: An overview. Advances in Human-Computer Interaction, 2013, 11. doi:10.1155/2013/136864.

  • Ben Zur, H., & Breznitz, S. J. (1981). The effect of time pressure on risky choice behavior. Acta Psychologica, 47(2), 89–104. doi:10.1016/0001-6918(81)90001-9.

    Article  Google Scholar 

  • Bishop, C. M. (2006). Pattern recognition and machine learning. New York, NY: Springer Science+Business Media.

    Google Scholar 

  • Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129(3), 387–398. doi:10.1016/j.actpsy.2008.09.005.

    Article  Google Scholar 

  • Byun, J. H., & Loh, C. S. (2015). Audial engagement: Effects of game sound on learner engagement in digital game-based learning environments. Computer in Human Behavior, 46, 129–138. doi:10.1016/j.chb.2014.12.052.

    Article  Google Scholar 

  • Canossa, A., & Drachen, A. (2009). Patterns of play: Play-personas in user-centred game development. In Proceedings of Breaking New Ground: Innovation in Games, Play, Practice and Theory Conference. London: DiGRA.

    Google Scholar 

  • Cobb, B. R., Rumí, R., & Salmerón, A. (2007). Bayesian network models with discrete and continuous variables. In P. Lucas, J. A. Gámez, & A. Salmerón (Eds.), Advances in probabilistic graphical models (Studies in fuzziness and soft computing, Vol. 214, pp. 81–102). Berlin, Germany: Springer. doi:10.1007/978-3-540-68996-6_4.

    Chapter  Google Scholar 

  • Crookall, D. (2010). Serious games, debriefing, and simulation/gaming as a discipline. Simulation & Gaming, 41(6), 898–920. doi:10.1177/1046878110390784.

    Article  Google Scholar 

  • Csikszentmihalyi, M. (1991). Flow: The psychology of optimum experience. New York: Harper Perennial.

    Google Scholar 

  • DeSanctis, G. (1984). Computer graphics as decision aids: Directions for research. Decision Sciences, 15(4), 463–487. doi:10.1111/j.1540-5915.1984.tb01236.x.

    Article  Google Scholar 

  • Díez, F. J., Mira, J., Iturralde, E., & Zubillaga, S. (1997). DIAVAL, a Bayesian expert system for echocardiography. Artificial Intelligence in Medicine, 10(1), 59–73. doi:10.1016/S0933-3657(97)00384-9.

    Article  Google Scholar 

  • Dixit, P. N., & Youngblood, G. M. (2008). Understanding playtest data through visual data mining in interactive 3D environments. In Proceedings of the 12th International Conference on Computer Games: AI, Animation, Mobile, Interactive Multimedia and Serious Games, Louisville (CGAMES 2008).Wolverhampton, England: University of Wolverhampton. Retrieved December 12, 2014, from http://gameintelligencegroup.org/files/2009/09/DixitACMSS2008.pdf

  • Djaouti, D., Alvarez, J., & Jessel, J.-P. (2011). Classifying serious games: The G/P/S model. In P. Felicia (Ed.), Handbook of research on improving learning and motivation through educational games (pp. 118–136). Hershey, PA: IGI Global. doi:10.4018/978-1-60960-495-0.ch006.

    Chapter  Google Scholar 

  • Drachen, A., & Canossa, A. (2011). Evaluating motion: Spatial user behaviour in virtual environment. International Journal of Arts and Technology, 4(3), 294–314. doi:10.1504/IJART.2011.041483.

    Article  Google Scholar 

  • Drachen, A., Canossa, A., & Sørensen, J. R. M. (2013). Gameplay metrics in game user research: Examples from the trenches. In M. S. El-Nasr, A. Drachen, & A. Canossa (Eds.), Game analytics: Maximizing the value of player data (pp. 285–319). London: Springer. doi:10.1007/978-1-4471-4769-5_14.

  • Drachen, A., Thurau, C., Sifa, R., & Bauckhage, C. (2013). A comparison of methods for player clustering via behavioral telemetry. In Proceedings of the 8th International Conference on the Foundations of Digital Games (FDG 2013) (pp. 245–252). Crete, Greece: Society for the Advancement of the Science of Digital Games.

    Google Scholar 

  • Dreyfus, S. E. (2004). The five-stage model of adult skill acquisition. Bulletin of Science, Technology and Society, 24(3), 177–181. doi:10.1177/0270467604264992.

    Article  Google Scholar 

  • Dreyfus, S. E., & Dreyfus, H. L. (1980). A five-stage model of the mental activities involved in directed skill acquisition. Berkeley, CA: University of California. Retrieved December 12, 2014, from http://www.dtic.mil/get-tr-doc/pdf?AD=ADA084551

  • Ericsson, K. A., Charness, N., Feltovich, P. J., & Hoffman, R. R. (Eds.). (2006). The Cambridge handbook of expertise and expert performance. Cambridge Handbooks in Psychology. New York, NY: Cambridge University Press.

    Google Scholar 

  • Ermi, L., & Mäyrä, F. (2007). Fundamental components of the gameplay experience: Analyzing immersion. In S. de Castell & J. Jenson (Eds.), Worlds in play: International perspectives on digital games research (pp. 37–53). New York: Peter Lang.

    Google Scholar 

  • Estivill-Castro, V. (2002). Why so many clustering algorithms: A position paper. ACM SIGKDD Explorations Newsletter, 4(1), 65–75. doi:10.1145/568574.568575.

    Article  Google Scholar 

  • Fan, X., Miller, B., Park, K.-E., Winward, B. W., Christensen, M., Grotevant, H. D., et al. (2006). An exploratory study about inaccuracy and invalidity in adolescent self-report surveys. Field Methods, 18(3), 223–244. doi:10.1177/152822X06289161.

    Article  Google Scholar 

  • Folkestad, J. E., Robinson, D. H., McKernan, B., Martey, R. M., Rhodes, M. G., & Stormer-Galley. (2015). Analytics-driven design: Impact and implications of team member psychological perspectives on a serious games (SGs) design framework. In C. S. Loh, Y. Sheng, & D. Ifenthaler (Eds.), Serious games analytics: Methodologies for performance measurement, assessment, and improvement. New York: Springer.

    Google Scholar 

  • Grimshaw, M., Lindley, C. A., & Nacke, L. (2008). Sound and immersion in the first-person shooter: Mixed measurement of the player’s sonic experience. In Proceedings of the Audio Mostly Conference. Retrieved December 12, 2014, from http://wlv.openrepository.com/wlv/bitstream/2436/35995/2/Grimshaw_CGAMES07.pdf

  • Heckerman, D. (1995). A tutorial on learning with Bayesian networks. Redmond, WA: Microsoft. Retrieved December 12, 2014, from http://research.microsoft.com/pubs/69588/tr-95-06.pdf

  • Hofer, A. (2011). Exploratory comparison of expert and novice pair programmers. In Z. Huzar, R. Koci, B. Meyer, B. Walter, & J. Zendulka (Eds.), Software Engineering Techniques (Vol. 4980, pp. 218–231). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-22386-0_17.

    Chapter  Google Scholar 

  • Hoskin, R. (2012). The dangers of self-report. Retrieved December 12, 2014, from http://www.sciencebrainwaves.com/uncategorized/the-dangers-of-self-report/

  • IJsselsteijn, W., de Kort, Y., Poels, K., Jurgelionis, A., & Bellotti, F. (2007). Characterising and measuring user experiences in digital games. In Proceedings of the International Conference on Advances in Computer Entertainment Technology (pp. 27–30).

    Google Scholar 

  • James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning — with applications in R. New York, NY: Springer New York. doi:10.1007/978-1-4614-7138-7.

    Google Scholar 

  • Jefford, M., Stockler, M. R., & Tattersall, M. H. N. (2003). Outcomes research: What is it and why does it matter? Internal Medicine Journal, 33(3), 110–118. doi:10.1046/j.1445-5994. 2003.00302.x.

    Article  Google Scholar 

  • Jonassen, D. H., Hannum, W. H., & Tessmer, M. (1989). Handbook of task analysis procedures. Westport, CT: Praeger Publishers.

    Google Scholar 

  • Joslin, S., Brown, R., & Drennan, P. (2007). The gameplay visualization manifesto. Computers in Entertainment, 5(3), 6. doi:10.1145/1316511.1316517.

    Article  Google Scholar 

  • Karelaia, N., & Hogarth, R. M. (2008). Skill, luck, overconfidence, and risk taking. Barcelona, Spain: Universitat Pompeu Fabra. doi:10.2139/ssrn.1374235.

  • Kim, J. H., Gunn, D. V., Schuh, E., Phillips, B., Pagulayan, R. J., & Wixon, D. (2008). Tracking Real-time User Experience (TRUE): A comprehensive instrumentation solution for complex systems. In Proceeding of the 26th Annual CHI Conference on Human Factors in Computing Systems (CHI’08) (p. 443). New York: ACM Press. doi:10.1145/1357054.1357126.

  • Kirkley, J., Kirkley, S., & Heneghan, J. (2007). Building bridges between serious game design and instructional design. In B. E. Shelton & D. A. Wiley (Eds.), Educational design & use of computer simulation games (pp. 59–81). Rotterdam, The Netherlands: Sense.

    Google Scholar 

  • Kirriemuir, J., & McFarlane, A. (2003). Use of computer and video games in the classroom. In Proceedings of the Level up Digital Games Research Conference. Utrecht, The Netherlands: Universiteit Utrecht.

    Google Scholar 

  • Lachenbruch, P. A., & Mickey, M. R. (1968). Estimation of error rates in discriminant analysis. Technometrics, 10(1), 1–11. doi:10.1080/00401706.1968.10490530.

    Article  Google Scholar 

  • Law, B., Atkins, M. S., Kirkpatrick, A. E., & Lomax, A. J. (2004). Eye gaze patterns differentiate novice and experts in a virtual laparoscopic surgery training environment. In Proceedings of the 2004 Symposium on Eye Tracking Research & Applications (ETRA ’04) (pp. 41–48). New York, NY: ACM Press. doi:10.1145/968363.968370.

    Chapter  Google Scholar 

  • Levin, A. (2010, August 30). Simulator training flaws tied to airline crashes. USA Today. Retrieved December 12, 2014, from http://usatoday30.usatoday.com/travel/flights/2010-08-31-1Acockpits31_ST_N.htm

  • Liu, M., Kang, J., Lee, J., Winzeler, E., & Liu, S. (2015). Examining through visualization what tools learners access as they play a serious game for middle school science. In C. S. Loh, Y. Sheng, & D. Ifenthaler (Eds.), Serious games analytics: Methodologies for performance measurement, assessment, and improvement. New York: Springer.

    Google Scholar 

  • Loh, C. S. (2006). Designing online games assessment as “Information Trails.”. In D. Gibson, C. Aldrich, & M. Prensky (Eds.), Games and simulation in online learning: Research and development frameworks (pp. 323–348). Hershey, PA: Idea Group. doi:10.4018/978-1-59904-941-0.ch032.

    Google Scholar 

  • Loh, C. S. (2012a). Improving the impact and return of investment of game-based learning. International Journal of Virtual and Personal Learning Environments, 4(1), 1–15. doi:10.4018/jvple.2013010101.

    Article  Google Scholar 

  • Loh, C. S. (2012b). Information trails: In-process assessment of game-based learning. In D. Ifenthaler, D. Eseryel, & X. Ge (Eds.), Assessment in game-based learning: Foundations, innovations, and perspectives (pp. 123–144). New York: Springer. doi:10.1007/978-1-4614-3546-4.

    Chapter  Google Scholar 

  • Loh, C. S., Anantachai, A., Byun, J. H., & Lenox, J. (2007). Assessing what players learned in serious games: In situ data collection, information trails, and quantitative analysis. In Q. Mehdi (Ed.), Proceedings of the Computer Games: AI, Animation, Mobile, Educational & Serious Games Conference, Louiseville (CGAMES 2007) (pp. 10–19). Wolverhampton, England: University of Wolverhampton.

    Google Scholar 

  • Loh, C. S., & Byun, J. H. (2009). Modding Neverwinter Nights into serious game. In D. Gibson & Y. K. Baek (Eds.), Digital simulations for improving education: Learning through artificial teaching environments (pp. 408–426). Hershey, PA: IGI-Global.

    Chapter  Google Scholar 

  • Loh, C. S., & Sheng, Y. (2015). Measuring the (dis-)similarity between expert and novice behaviors as serious games analytics. Education and Information Technologies, 20(1), 5–19. doi:10.1007/s10639-013-9263-y

  • Loh, C. S., & Sheng, Y. (2013). Performance metrics for serious games: Will the (real) expert please step forward? In Proceedings of the Computer Games: AI, Animation, Mobile, Educational & Serious Games Conference (CGAMES 2013) (pp. 202–206). Louiseville. IEEE. doi:10.1109/CGames.2013.6632633.

  • Loh, C. S., & Sheng, Y. (2014). Maximum Similarity Index (MSI): A metric to differentiate the performance of novices vs. multiple-experts in serious games. Computer in Human Behavior, 39, 322–330. doi:10.1016/j.chb.2014.07.022.

    Article  Google Scholar 

  • Loh, C. S., Sheng, Y., & Ifenthaler, D. (2015). Serious games analytics: Theoretical framework. In C. S. Loh, Y. Sheng, & D. Ifenthaler (Eds.), Serious games analytics: Methodologies for performance measurement, assessment, and improvement. New York: Springer.

    Google Scholar 

  • Loh, C. S., Sheng, Y., & Li, I.-H. (2015). Predicting expert-novice performance as Serious Games Analytics with objective-oriented and navigational action sequences. Computers in Human Behavior. 49:147–155. doi:10.1016/j.chb.2015.02.053.

  • Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Boston, MA: Addison-Wesley.

    Google Scholar 

  • Medler, B., & Magerko, B. (2011). Analytics of play: Using information visualization and gameplay practices for visualizing video game data. Parsons Journal for Information Mapping, 3(1), 1–12.

    Google Scholar 

  • Michael, D., & Chen, S. (2006). Serious games: Games that educate, train, and inform. Boston: Thomson Course Technology PTR.

    Google Scholar 

  • Mislevy, R. J. (1985). Estimation of latent group effects. Journal of the American Statistical Association, 80(392), 993–997. doi:10.1080/01621459.1985.10478215.

    Article  Google Scholar 

  • Moura, D., Seif El-Nasr, M., & Shaw, C. D. (2011). Visualizing and understanding players’ behavior in video games: Discovering patterns and supporting aggregation and comparison. In Proceedings of the 2011 ACM SIGGRAPH Symposium on Video Games (pp. 11–15). New York: ACM Press. doi:10.1145/2037692.2037695.

  • Nacke, L. E., Drachen, A., & Göbel, S. (2010). Methods for evaluating gameplay experience in a serious gaming context. International Journal of Computer Science in Sport, 9(2), 1–12.

    Google Scholar 

  • Niedermayer, D. (1998). An introduction to Bayesian networks and their contemporary applications. Retrieved December 12, 2014, from http://www.niedermayer.ca/papers/bayesian/bayes.html

  • O’Rourke, E., Butler, E., Liu, Y. E., Ballweber, C., & Popovic, Z. (2013). The effects of age on player behavior in educational games. In G. N. Yannakakis & E. Aarseth (Eds.), Proceedings of the 8th International Conference on the Foundations of Digital Games (FDG 2013) (pp. 158–165). Chania, Greece: Society for the Advancement of the Science of Digital Games.

    Google Scholar 

  • Oniśko, A., & Druzdzel, M. J. (2013). Impact of precision of Bayesian network parameters on accuracy of medical diagnostic systems. Artificial Intelligence in Medicine, 57(3), 197–206. doi:10.1016/j.artmed.2013.01.004.

    Article  Google Scholar 

  • Paulhus, D. L. (1991). Measurement and control of response biases. In J. P. Robinson, P. R. Shaver, & L. S. Wrightsman (Eds.), Measures of personality and social psychological attitude (pp. 17–59). San Diego, CA: Academic.

    Chapter  Google Scholar 

  • Pieters, R., & Warlop, L. (1999). Visual attention during brand choice: The impact of time pressure and task motivation. International Journal of Research in Marketing, 16(1), 1–16. doi:10.1016/S0167-8116(98)00022-6.

    Article  Google Scholar 

  • Pruett, C. (2010). Hot failure: Tuning gameplay with simple player metrics. Game Developer Magazine. Retrieved December 12, 2014, from http://gamasutra.com/view/feature/6155/hot_failure_tuning_gameplay_with_.php

  • Quellmalz, E., Timms, M., & Schneider, S. (2009). Assessment of student learning in science simulations and games. In processings of the Workshop on learning science: Computer games, simulations, and education. Washington, DC: National Academy of Sciences.

    Google Scholar 

  • Robinson, R. W. (2007). Learning the structure of Bayesian networks. In T. D. Nielsen & F. V. Jensen (Eds.), Bayesian networks and decision graphs (2nd ed., pp. 229–264). New York: Springer.

    Google Scholar 

  • Roese, N. J., & Jamieson, D. W. (1993). Twenty years of bogus pipeline research: A critical review and meta-analysis. Psychological Bulletin, 114, 363–375.

    Article  Google Scholar 

  • Rupp, A. A., Gushta, M., Mislevy, R. J., & Shaffer, D. W. (2010). Evidence-centered design of epistemic games: Measurement principles for complex learning environments. The Journal of Technology, Learning and Assessment, 8(4), 3–41.

    Google Scholar 

  • Sandford, R., & Williamson, B. (2005). Games and learning: A handbook from Futurelab. Bristol, England: Futurelab.

    Google Scholar 

  • Sawyer, B., & Rejeski, D. (2002). Serious games: Improving public policy through game-based learning and simulation. Washington, DC: Woodrow Wilson International Center for Scholars. Retrieved December 12, 2014, from http://www.seriousgames.org/images/seriousarticle.pdf

  • Scarlatos, L. L., & Scarlatos, T. (2010). Visualizations for the assessment of learning in computer games. In Proceedings of the 7th International Conference & Expo on Emerging Technologies for a Smarter World, Incheon, S. Korea (CEWIT 2010). Retrieved December 12, 2014, from http://ms.cc.sunysb.edu/~lscarlatos/pubs/LLS2010_CEWIT.pdf

  • Seif El-Nasr, M., Drachen, A., & Canossa, A. (Eds.). (2013). Game analytics: Maximizing the value of player data. London: Springer.

    Google Scholar 

  • Shute, V. J. (2011). Stealth assessment in computer-based games to support learning. In S. Tobias & J. D. Fletcher (Eds.), Computer games and instruction (pp. 503–524). Charlotte, NC: Information Age.

    Google Scholar 

  • Shute, V. J., Masduki, I., Donmez, O., Dennen, V. P., Kim, Y. J., Jeong, A. C., et al. (2010). Modeling, assessing, and supporting key competencies within game environments. In D. Ifenthaler, P. Pirnay-Dummer, & N. M. Seel (Eds.), Computer-based diagnostics and systematic analysis of knowledge (Part 4) (pp. 281–309). Boston: Springer. doi:10.1007/978-1-4419-5662-0_15.

    Chapter  Google Scholar 

  • Shute, V. J., & Ventura, M. (2013). Stealth assessment: Measuring and supporting learning in video games. Cambridge, England: MIT Press.

    Google Scholar 

  • Shute, V. J., Ventura, M., Bauer, M., & Zapata-Rivera, D. (2009). Melding the power of serious games and embedded assessment to monitor and foster learning. In U. Ritterfeld, M. Cody, & P. Vorderer (Eds.), Serious games: Mechanisms and effects (pp. 295–321). New York: Routledge.

    Google Scholar 

  • Smith, S. P., & Du’Mont, S. (2009). Measuring the effect of gaming experience on virtual environment navigation tasks. In K. Kiyokawa, S. Coquillart, & R. Balakrishnan (Eds.), Proceedings of the IEEE Symposium on 3D User Interfaces (3DUI 2009) (pp. 3–10). Louisiana: IEEE. doi:10.1109/3DUI.2009.4811198.

  • Thawonmas, R., Ho, J.Y., & Matsumoto, Y. (2003). Identification of player types in massively multiplayer online games. In Proceedings of the 34th annual conference of international simulation and gaming association, Chiba, Japan (ISAGA 2003) (pp. 893–900).

    Google Scholar 

  • Thawonmas, R., & Iizuka, K. (2008). Visualization of online-game players based on their action behaviors. International Journal of Computer Games Technology, 2008, 1–9. doi:10.1155/2008/906931.

    Article  Google Scholar 

  • Torrente, J., Borro-Escribano, B., Freire, M., del Blanco, A., Marchiori, E. J., Martinez-Ortiz, I., et al. (2014). Development of game-like simulations for procedural knowledge in healthcare education. IEEE Transactions on Learning Technologies, 7(1), 69–82. doi:10.1109/TLT.2013.35.

    Article  Google Scholar 

  • Underwood, J. (2005). Novice and expert performance with a dynamic control task: Scanpaths during a computer game. In G. Underwood (Ed.), Cognitive processes in eye guidance (pp. 303–323). Oxford, England: Oxford University Press. doi:10.1093/acprof:oso/9780198566816. 003.0013.

    Chapter  Google Scholar 

  • Van Eck, R. (2006). Digital game-based learning: It’s not just the digital natives who are restless. EDUCAUSE Review, 41(2), 16–30.

    Google Scholar 

  • Wallner, G. (2013). Play-graph: A methodology and visualization approach for the analysis of gameplay data. In G. N. Yannakakis & E. Aarseth (Eds.), Proceedings of the 8th International Conference on the Foundations of Digital Games (FDG 2013) (pp. 253–260). Crete, Greece: Society for the Advancement of the Science of Digital Games.

    Google Scholar 

  • Wallner, G., & Kriglstein, S. (2012). A spatiotemporal visualization approach for the analysis of gameplay data. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’12) (pp. 1115–1124). New York: ACM Press. doi:10.1145/2207676.2208558

  • Wallner, G., & Kriglstein, S. (2013). Visualization-based analysis of gameplay data—A review of literature. Entertainment Computing, 4(3), 143–155. doi:10.1016/j.entcom.2013.02.002.

    Article  Google Scholar 

  • Wickens, C. D., Stokes, A., Barnett, B., & Hyman, F. (1993). The effects of stress on pilot judgment in a MIDIS simulator. In O. Svenson & A. J. Maule (Eds.), Time pressure and stress in human judgment and decision making (pp. 271–292). Boston: Springer. doi:10.1007/978-1-4757-6846-6_18.

    Chapter  Google Scholar 

  • Williams, A. M., & Ford, P. R. (2008). Expertise and expert performance in sport. International Review of Sport and Exercise Psychology, 1(1), 4–18. doi:10.1080/17509840701836867.

    Article  Google Scholar 

  • Young, M. E., Sutherland, S. C., & Cole, J. J. (2011). Individual differences in causal judgment under time pressure: Sex and prior video game experience as predictors. International Journal of Comparative Psychology, 24(1), 76–98.

    Google Scholar 

Download references

Acknowledgments

Research projects from the Virtual Environment Lab (V-Lab) have been made possible in part through funding from the Defense University Research Instrumentation Program (DURIP) from the U.S. Army Research Office. The authors would like to thank Ms. Ariel Yining Loh for her help in editing the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Sebastian Loh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Loh, C.S., Sheng, Y. (2015). Measuring Expert Performance for Serious Games Analytics: From Data to Insights. In: Loh, C., Sheng, Y., Ifenthaler, D. (eds) Serious Games Analytics. Advances in Game-Based Learning. Springer, Cham. https://doi.org/10.1007/978-3-319-05834-4_5

Download citation

Publish with us

Policies and ethics