Finite Element Analysis of Multi-Component Assemblies: CAD-Based Domain Decomposition

  • Kirill Pichon Gostaf
  • Olivier Pironneau
  • François-Xavier Roux
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 98)

Abstract

We apply domain decomposition to carry out finite element simulations of multi-component computer aided design (CAD) assemblies. The novelty of our research is the CAD-based domain decomposition. We consider design parts as independent sub-domains and reuse assembly topology to define regions, where the interface boundary conditions should be applied. The Dirichlet–Neumann (Funaro et al., SIAM J. Numer. Anal. 25, 1213–1236, 1988), Neumann–Neumann (Tallec et al., J. Comput. Appl. Math. 34, 93–117, 1991) and FETI (Farhat and Roux, Int. J. Numer. Methods Eng. 32, 1205–1227, 1991) methods for non-matching triangulations have been studied. We endorse the proposed framework with numerical experiments and we focus on the essence of its parallel implementation.

References

  1. 1.
    Funaro, D., Quarteroni, A., Zanolli, P.: An iterative procedure with interface relaxation for domain decomposition methods. SIAM J. Numer. Anal. 25(6), 1213–1236 (1988)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Le Tallec, P., De Roeck, Y.H., Vidrascu, M.: Domain decomposition methods for large linearity elliptic three-dimensional problems. J. Comput. Appl. Math. 34(1), 93–117 (1991)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Farhat, C., Roux, F.X.: A method of finite element tearing and interconnecting and its parallel solution algorithm. Internat. J. Numer. Methods Engrg. 32, 1205–1227 (1991)MATHCrossRefGoogle Scholar
  4. 4.
    Hecht, F., Lions, J.L., Pironneau, O.: Domain decomposition algorithm for computer aided design. Appl. Nonlinear Anal. 1, 185–198 (2002)CrossRefGoogle Scholar
  5. 5.
    Heintz, P., Hansbo, P.: Stabilized Lagrange multiplier methods for bilateral elastic contact with friction. Comput. Methods Appl. Mech. Eng. 195(33–36), 4323–4333 (2006)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Hartmann, S., Ramm, E.: A mortar based contact formulation for non-linear dynamics using dual Lagrange multipliers. Finite Elem. Anal. Des. 44(5), 245–258 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Nilsson, L., Forsberg, J.: Evaluation of response surface methodologies used in crashworthiness optimization. Int. J. Impact Eng. 32, 759–777 (2006)CrossRefGoogle Scholar
  8. 8.
    Benson, D.J., Hallquist, J.O.: A single surface contact algorithm for the post-buckling analysis of shell structures. Comput. Methods Appl. Mech. Eng. 78(2), 141–163 (1990)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Puso, M.A., Laursen, T.A.: A 3D contact smoothing method using Gregory patches. Int. J. Numer. Methods Eng. 54, 1161–1194 (2002)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Parametric Technology Corporation: PRO/ENGINEER Wildfire 4.0 Part modeling. Help topic collection (2008)Google Scholar
  11. 11.
    SIMULIA: Realistic Simulation Inside CATIA V5. Abaqus for CATIA V5, R19 (2008)Google Scholar
  12. 12.
    Bull, J.M., Enright, J., Guo, X., Maynard, C., Reid, F.: Performance evaluation of mixed-mode OpenMP/MPI implementations. Int. J. Parallel Prog. 38(5–6), 396–417 (2010)MATHCrossRefGoogle Scholar
  13. 13.
    Smith, L., Bull, M.: Development of mixed mode MPI / OpenMP applications. Sci. Program. 9(2–3), 83–98 (2001)Google Scholar
  14. 14.
    Ern, A.: Aide-mémoire, Eléments finis. Dunod, Paris (2005)Google Scholar
  15. 15.
    Pironneau, O., Hecht, F., Le Hyaric, A., Ohtsuka, K.: FreFem++. (2013). http://www.freefem.org/

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Kirill Pichon Gostaf
    • 1
  • Olivier Pironneau
    • 1
  • François-Xavier Roux
    • 1
  1. 1.Laboratoire Jacques-Louis Lions, UPMCParisFrance

Personalised recommendations