Domain Decomposition Methods for Problems of Unilateral Contact Between Elastic Bodies with Nonlinear Winkler Covers

  • Ihor I. ProkopyshynEmail author
  • Ivan I. Dyyak
  • Rostyslav M. Martynyak
  • Ivan A. Prokopyshyn
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 98)


In this paper we propose on continuous level a class of domain decomposition methods of Robin–Robin type to solve the problems of unilateral contact between elastic bodies with nonlinear Winkler covers. These methods are based on abstract nonstationary iterative algorithms for nonlinear variational equations in reflexive Banach spaces. We also provide numerical investigations of obtained methods using finite element approximations.



This work was partially supported by Grant 23-08-12 of National Academy of Sciences of Ukraine.


  1. 1.
    Bayada, G., Sabil, J., Sassi, T.: A Neumann–Neumann domain decomposition algorithm for the Signorini problem. Appl. Math. Lett. 17(10), 1153–1159 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bresch, D., Koko, J.: An optimization-based domain decomposition method for nonlinear wall laws in coupled systems. Math. Models Methods Appl. Sci. 14(7), 1085–1101 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Dostál, Z., Kozubek, T., Vondrák, V., Brzobohatý, T., Markopoulos, A.: Scalable TFETI algorithm for the solution of multibody contact problems of elasticity. Int. J. Numer. Methods Eng. 41, 675–696 (2010)Google Scholar
  4. 4.
    Dyyak, I.I., Prokopyshyn, I.I.: Domain decomposition schemes for frictionless multibody contact problems of elasticity. In: Kreiss, G., et al. (eds.) Numerical Mathematics and Advanced Applications 2009, pp. 297–305. Springer, Berlin (2010)CrossRefGoogle Scholar
  5. 5.
    Dyyak, I.I., Prokopyshyn, I.I., Prokopyshyn, I.A.: Penalty Robin–Robin domain decomposition methods for unilateral multibody contact problems of elasticity: Convergence results. (2012)
  6. 6.
    Goryacheva, I.G.: Contact Mechanics in Tribology. Kluwer, Dordrecht (1998)CrossRefzbMATHGoogle Scholar
  7. 7.
    Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as semismooth Newton method. SIAM J. Optim. 13(3), 865–888 (2003)CrossRefzbMATHGoogle Scholar
  8. 8.
    Koko, J.: Convergence analysis of optimization-based domain decomposition methods for a bonded structure. Appl. Numer. Math. 58, 69–87 (2008)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Koko, J.: Uzawa block relaxation domain decomposition method for a two-body frictionless contact problem. Appl. Math. Lett. 22, 1534–1538 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Prokopyshyn, I.I.: Parallel domain decomposition schemes for frictionless contact problems of elasticity. Visnyk Lviv Univ. Ser. Appl. Math. Comput. Sci. 14, 123–133 (2008) [in Ukrainian]Google Scholar
  11. 11.
    Prokopyshyn, I.I., Dyyak, I.I., Martynyak, R.M., Prokopyshyn, I.A.: Penalty Robin–Robin domain decomposition schemes for contact problems of nonlinear elasticity. In: Bank, R., Holst, M., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods in Science and Engineering XX, Lecture Notes in Computational Science and Engineering, vol. 91, pp. 647–654. Springer, Berlin (2013)CrossRefGoogle Scholar
  12. 12.
    Sassi, T., Ipopa, M., Roux, F.X.: Generalization of Lions’ nonoverlapping domain decomposition method for contact problems. In: Langer, U., Discacciati, M., Keyes, D.E., Widlund, O.B., Zulehner, W. (eds.) Domain Decomposition Methods in Science and Engineering XVII, Lecture Notes in Computational Science and Engineering, vol. 60, pp. 623–630. Springer, Berlin (2008)CrossRefGoogle Scholar
  13. 13.
    Shvets, R.M., Martynyak, R.M., Kryshtafovych, A.A.: Discontinuous contact of an anisotropic half-plane and a rigid base with disturbed surface. Int. J. Eng. Sci. 34(2), 183–200 (1996)CrossRefzbMATHGoogle Scholar
  14. 14.
    Suquet, P.M.: Discontinuities and plasticity. In: Moreau, J.J., Panagiotopoulos, P.O. (eds.) Nonsmooth Mechanics and Applications. CISM Courses and Lectures, vol. 302, pp. 279–340. Springer, Wien (1988)CrossRefGoogle Scholar
  15. 15.
    Vorovich, I.I., Alexandrov, V.M. (eds.): Contact Mechanics. Fizmatlit, Moscow (2001)Google Scholar
  16. 16.
    Wohlmuth, B.: Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numer. 20, 569–734 (2011)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ihor I. Prokopyshyn
    • 1
    Email author
  • Ivan I. Dyyak
    • 2
  • Rostyslav M. Martynyak
    • 1
  • Ivan A. Prokopyshyn
    • 2
  1. 1.Pidstryhach IAPMM NASULvivUkraine
  2. 2.Ivan Franko National University of LvivLvivUkraine

Personalised recommendations