Skip to main content

Optimized Schwarz Methods for Maxwell Equations with Discontinuous Coefficients

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XXI

Abstract

We study non-overlapping Schwarz methods for solving time-harmonic Maxwell’s equations in heterogeneous media. We show that the classical Schwarz algorithm is always divergent when coefficient jumps are present along the interface. In the case of transverse magnetic or transverse electric two dimensional formulations, convergence can be achieved in specific configurations only. We then develop optimized Schwarz methods which can take coefficient jumps into account in their transmission conditions. These methods exhibit rapid convergence, and sometimes converge independently of the mesh parameter, even without overlap. We illustrate our analysis with numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alonso-Rodriguez, A., Gerardo-Giorda, L.: New nonoverlapping domain decomposition methods for the harmonic Maxwell system. SIAM J. Sci. Comput. 28(1), 102–122 (2006)

    Article  MathSciNet  Google Scholar 

  2. Chevalier, P., Nataf, F.: An OO2 (Optimized Order 2) method for the Helmholtz and Maxwell equations. In: 10th International Conference on Domain Decomposition Methods in Science and in Engineering, pp. 400–407. AMS, Providence (1997)

    Google Scholar 

  3. Després, B.: Décomposition de domaine et problème de Helmholtz. C. R. Acad. Sci. Paris 1(6), 313–316 (1990)

    Google Scholar 

  4. Després, B., Joly, P., Roberts, J.: A domain decomposition method for the harmonic Maxwell equations. In: Iterative Methods in Linear Algebra, pp. 475–484. North-Holland, Amsterdam (1992)

    Google Scholar 

  5. Dolean, V., Lanteri, S., Perrussel, R.: A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods. J. Comput. Phys. 227(3), 2044–2072 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dolean, V., Lanteri, S., Perrussel, R.: Optimized Schwarz algorithms for solving time-harmonic Maxwell’s equations discretized by a discontinuous Galerkin method. IEEE. Trans. Magn. 44(6), 954–957 (2008)

    Article  Google Scholar 

  7. Dolean, V., Gerardo-Giorda, L., Gander, M.: Optimized Schwarz methods for Maxwell equations. SIAM J. Sci. Comput. 31(3), 2193–2213 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dolean, V., El Bouajaji, M., Gander, M.J., Lanteri, S.: Optimized Schwarz methods for Maxwell’s equations with non-zero electric conductivity. In: Domain Decomposition Methods in Science and Engineering XIX. Lecture Notes in Computational Science and Engineering, vol. 78, pp. 269–276. Springer, Heidelberg (2011). doi:10.1007/978-3-642-11304-8_30. http://dx.doi.org/10.1007/978-3-642-11304-8_30

  9. Dolean, V., El Bouajaji, M., Gander, M.J., Lanteri, S., Perrussel, R.: Domain decomposition methods for electromagnetic wave propagation problems in heterogeneous media and complex domains. In: Domain Decomposition Methods in Science and Engineering XIX. Lecture Notes in Computational Science and Engineering, vol. 78, pp. 15–26. Springer, Heidelberg (2011). doi:10.1007/978-3-642-11304-8_2. http://dx.doi.org/10.1007/978-3-642-11304-8_2

  10. Dubois, O.: Optimized Schwarz methods for the advection-diffusion equation and for problems with discontinuous coefficients. Ph.D. thesis, McGill University (2007)

    Google Scholar 

  11. El Bouajaji, M., Dolean, V., Gander, M.J., Lanteri, S.: Optimized Schwarz methods for the time-harmonic Maxwell equations with damping. SIAM J. Sci. Comput. 34(4), A2048–A2071 (2012). http://dx.doi.org/10.1137/110842995

  12. Gander, M., Magoulès, F., Nataf, F.: Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24(1), 38–60 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gander, M.J.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44(2), 699–731 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gander, M.J., Halpern, L., Magoulès, F.: An optimized Schwarz method with two-sided robin transmission conditions for the Helmholtz equation. Int. J. Numer. Methods Fluids 55(2), 163–175 (2007)

    Article  MATH  Google Scholar 

  15. Peng, Z., Lee, J.F.: Non-conformal domain decomposition method with second-order transmission conditions for time-harmonic electromagnetics. J. Comput. Phys. 229(16), 5615–5629 (2010). http://dx.doi.org/10.1016/j.jcp.2010.03.049

  16. Peng, Z., Rawat, V., Lee, J.F.: One way domain decomposition method with second order transmission conditions for solving electromagnetic wave problems. J. Comput. Phys. 229(4), 1181–1197 (2010). http://dx.doi.org/10.1016/j.jcp.2009.10.024

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin Veneros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dolean, V., Gander, M.J., Veneros, E. (2014). Optimized Schwarz Methods for Maxwell Equations with Discontinuous Coefficients. In: Erhel, J., Gander, M., Halpern, L., Pichot, G., Sassi, T., Widlund, O. (eds) Domain Decomposition Methods in Science and Engineering XXI. Lecture Notes in Computational Science and Engineering, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-319-05789-7_49

Download citation

Publish with us

Policies and ethics