Abstract
We study non-overlapping Schwarz methods for solving time-harmonic Maxwell’s equations in heterogeneous media. We show that the classical Schwarz algorithm is always divergent when coefficient jumps are present along the interface. In the case of transverse magnetic or transverse electric two dimensional formulations, convergence can be achieved in specific configurations only. We then develop optimized Schwarz methods which can take coefficient jumps into account in their transmission conditions. These methods exhibit rapid convergence, and sometimes converge independently of the mesh parameter, even without overlap. We illustrate our analysis with numerical experiments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alonso-Rodriguez, A., Gerardo-Giorda, L.: New nonoverlapping domain decomposition methods for the harmonic Maxwell system. SIAM J. Sci. Comput. 28(1), 102–122 (2006)
Chevalier, P., Nataf, F.: An OO2 (Optimized Order 2) method for the Helmholtz and Maxwell equations. In: 10th International Conference on Domain Decomposition Methods in Science and in Engineering, pp. 400–407. AMS, Providence (1997)
Després, B.: Décomposition de domaine et problème de Helmholtz. C. R. Acad. Sci. Paris 1(6), 313–316 (1990)
Després, B., Joly, P., Roberts, J.: A domain decomposition method for the harmonic Maxwell equations. In: Iterative Methods in Linear Algebra, pp. 475–484. North-Holland, Amsterdam (1992)
Dolean, V., Lanteri, S., Perrussel, R.: A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods. J. Comput. Phys. 227(3), 2044–2072 (2008)
Dolean, V., Lanteri, S., Perrussel, R.: Optimized Schwarz algorithms for solving time-harmonic Maxwell’s equations discretized by a discontinuous Galerkin method. IEEE. Trans. Magn. 44(6), 954–957 (2008)
Dolean, V., Gerardo-Giorda, L., Gander, M.: Optimized Schwarz methods for Maxwell equations. SIAM J. Sci. Comput. 31(3), 2193–2213 (2009)
Dolean, V., El Bouajaji, M., Gander, M.J., Lanteri, S.: Optimized Schwarz methods for Maxwell’s equations with non-zero electric conductivity. In: Domain Decomposition Methods in Science and Engineering XIX. Lecture Notes in Computational Science and Engineering, vol. 78, pp. 269–276. Springer, Heidelberg (2011). doi:10.1007/978-3-642-11304-8_30. http://dx.doi.org/10.1007/978-3-642-11304-8_30
Dolean, V., El Bouajaji, M., Gander, M.J., Lanteri, S., Perrussel, R.: Domain decomposition methods for electromagnetic wave propagation problems in heterogeneous media and complex domains. In: Domain Decomposition Methods in Science and Engineering XIX. Lecture Notes in Computational Science and Engineering, vol. 78, pp. 15–26. Springer, Heidelberg (2011). doi:10.1007/978-3-642-11304-8_2. http://dx.doi.org/10.1007/978-3-642-11304-8_2
Dubois, O.: Optimized Schwarz methods for the advection-diffusion equation and for problems with discontinuous coefficients. Ph.D. thesis, McGill University (2007)
El Bouajaji, M., Dolean, V., Gander, M.J., Lanteri, S.: Optimized Schwarz methods for the time-harmonic Maxwell equations with damping. SIAM J. Sci. Comput. 34(4), A2048–A2071 (2012). http://dx.doi.org/10.1137/110842995
Gander, M., Magoulès, F., Nataf, F.: Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24(1), 38–60 (2002)
Gander, M.J.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44(2), 699–731 (2006)
Gander, M.J., Halpern, L., Magoulès, F.: An optimized Schwarz method with two-sided robin transmission conditions for the Helmholtz equation. Int. J. Numer. Methods Fluids 55(2), 163–175 (2007)
Peng, Z., Lee, J.F.: Non-conformal domain decomposition method with second-order transmission conditions for time-harmonic electromagnetics. J. Comput. Phys. 229(16), 5615–5629 (2010). http://dx.doi.org/10.1016/j.jcp.2010.03.049
Peng, Z., Rawat, V., Lee, J.F.: One way domain decomposition method with second order transmission conditions for solving electromagnetic wave problems. J. Comput. Phys. 229(4), 1181–1197 (2010). http://dx.doi.org/10.1016/j.jcp.2009.10.024
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Dolean, V., Gander, M.J., Veneros, E. (2014). Optimized Schwarz Methods for Maxwell Equations with Discontinuous Coefficients. In: Erhel, J., Gander, M., Halpern, L., Pichot, G., Sassi, T., Widlund, O. (eds) Domain Decomposition Methods in Science and Engineering XXI. Lecture Notes in Computational Science and Engineering, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-319-05789-7_49
Download citation
DOI: https://doi.org/10.1007/978-3-319-05789-7_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05788-0
Online ISBN: 978-3-319-05789-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)