Skip to main content

Hybrid Domain Decomposition Solvers for the Helmholtz Equation

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XXI

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 98))

  • 1297 Accesses

Abstract

In this work, domain decomposition preconditioners for the Helmholtz and the vector valued wave equation are presented. A mixed hybrid formulation of the underlaying equations provides in a natural way appropriate interface conditions, such that an efficient iterative solution with Krylov subspace methods combined with domain decomposition preconditioners is possible. Apart from a BDDC preconditioner a new Robin type domain decomposition preconditioner with an exact subdomain solver is constructed. The efficiency of these solvers is demonstrated by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold, D., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Model. Math. Anal. Numer. 19(1), 7–32 (1985)

    MATH  MathSciNet  Google Scholar 

  2. Desprès, B.: Méthodes de décomposition de domains pour les problèms de propagation d’ondes en régime harmonique. Ph.D. thesis, Université Paris IX Dauphine (1991)

    Google Scholar 

  3. Dohrmann, C.: A preconditioner for substructuring based on constrained energy minimization. SIAM J. Sci. Comput. 25(1), 246–258 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Engquist, B., Ying, L.: Sweeping preconditioner for the Helmholtz equation: hierarchical matrix representation. Commun. Pure Appl. Math. 64(5), 697–735 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Erlangga, Y.: Advances in iterative methods and preconditioners for the Helmholtz equation. Arch. Comput. Methods Eng. 15(1), 37–66 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Farhat, C., Macedo, A., Lesoinne, M.: A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems. Numer. Math. 85(2), 283–308 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Farhat, C., Avery, P., Tezaur, R., Li, J.: FETI-DPH: a dual-primal domain decomposition method for acoustic scattering. J. Comput. Acoust. 13(3), 499–524 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gander, M., Magoulès, F., Nataf, F.: Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24(1), 38–60 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Huber, M.: Hybrid discontinuous galerkin methods for the wave equation. Ph.D. thesis, Vienna University of Technology. http://www.asc.tuwien.ac.at/~mhuber/thesis_huber.pdf

  10. Huber, M., Pechstein, A., Schöberl, J.: Hybrid domain decomposition solvers for the helmholtz and the time harmonic Maxwell’s equation. In: Domain Decomposition Methods in Science and Engineering XX, Lecture Notes in Computational Science and Engineering, vol. 91, pp. 279–287. Springer, Berlin (2013)

    Google Scholar 

  11. Li, J., Widlund, O.: FETI-DP, BDDC, and block Cholesky methods. Int. J. Numer. Methods Eng. 66(2), 250–271 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Melenk, J.: On generalized finite element methods. Ph.D. thesis, University of Maryland (1995)

    Google Scholar 

  13. Monk, P., Sinwel, A., Schöberl, J.: Hybridizing Raviart-Thomas elements for the Helmholtz equation. Electromagnetics 30(1), 149–176 (2010)

    Article  Google Scholar 

  14. Schöberl, J.: NETGEN - an advanced front 2D/3D-mesh generator based on abstract rules. Comput. Vis. Sci. 1(1), 41–52 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Huber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Huber, M., Schöberl, J. (2014). Hybrid Domain Decomposition Solvers for the Helmholtz Equation. In: Erhel, J., Gander, M., Halpern, L., Pichot, G., Sassi, T., Widlund, O. (eds) Domain Decomposition Methods in Science and Engineering XXI. Lecture Notes in Computational Science and Engineering, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-319-05789-7_32

Download citation

Publish with us

Policies and ethics