Abstract
In this work, domain decomposition preconditioners for the Helmholtz and the vector valued wave equation are presented. A mixed hybrid formulation of the underlaying equations provides in a natural way appropriate interface conditions, such that an efficient iterative solution with Krylov subspace methods combined with domain decomposition preconditioners is possible. Apart from a BDDC preconditioner a new Robin type domain decomposition preconditioner with an exact subdomain solver is constructed. The efficiency of these solvers is demonstrated by numerical examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arnold, D., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Model. Math. Anal. Numer. 19(1), 7–32 (1985)
Desprès, B.: Méthodes de décomposition de domains pour les problèms de propagation d’ondes en régime harmonique. Ph.D. thesis, Université Paris IX Dauphine (1991)
Dohrmann, C.: A preconditioner for substructuring based on constrained energy minimization. SIAM J. Sci. Comput. 25(1), 246–258 (2003)
Engquist, B., Ying, L.: Sweeping preconditioner for the Helmholtz equation: hierarchical matrix representation. Commun. Pure Appl. Math. 64(5), 697–735 (2011)
Erlangga, Y.: Advances in iterative methods and preconditioners for the Helmholtz equation. Arch. Comput. Methods Eng. 15(1), 37–66 (2008)
Farhat, C., Macedo, A., Lesoinne, M.: A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems. Numer. Math. 85(2), 283–308 (2000)
Farhat, C., Avery, P., Tezaur, R., Li, J.: FETI-DPH: a dual-primal domain decomposition method for acoustic scattering. J. Comput. Acoust. 13(3), 499–524 (2005)
Gander, M., Magoulès, F., Nataf, F.: Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24(1), 38–60 (2002)
Huber, M.: Hybrid discontinuous galerkin methods for the wave equation. Ph.D. thesis, Vienna University of Technology. http://www.asc.tuwien.ac.at/~mhuber/thesis_huber.pdf
Huber, M., Pechstein, A., Schöberl, J.: Hybrid domain decomposition solvers for the helmholtz and the time harmonic Maxwell’s equation. In: Domain Decomposition Methods in Science and Engineering XX, Lecture Notes in Computational Science and Engineering, vol. 91, pp. 279–287. Springer, Berlin (2013)
Li, J., Widlund, O.: FETI-DP, BDDC, and block Cholesky methods. Int. J. Numer. Methods Eng. 66(2), 250–271 (2006)
Melenk, J.: On generalized finite element methods. Ph.D. thesis, University of Maryland (1995)
Monk, P., Sinwel, A., Schöberl, J.: Hybridizing Raviart-Thomas elements for the Helmholtz equation. Electromagnetics 30(1), 149–176 (2010)
Schöberl, J.: NETGEN - an advanced front 2D/3D-mesh generator based on abstract rules. Comput. Vis. Sci. 1(1), 41–52 (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Huber, M., Schöberl, J. (2014). Hybrid Domain Decomposition Solvers for the Helmholtz Equation. In: Erhel, J., Gander, M., Halpern, L., Pichot, G., Sassi, T., Widlund, O. (eds) Domain Decomposition Methods in Science and Engineering XXI. Lecture Notes in Computational Science and Engineering, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-319-05789-7_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-05789-7_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05788-0
Online ISBN: 978-3-319-05789-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)