Skip to main content

Overlapping Domain Decomposition Methods with FreeFem++

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XXI

Abstract

In this note, the performances of a framework for two-level overlapping domain decomposition methods are assessed. Numerical experiments are run on Curie, a Tier-0 system for PRACE, for two second order elliptic PDE with highly heterogeneous coefficients: a scalar equation of diffusivity and the system of linear elasticity. Those experiments yield systems with up to ten billion unknowns in 2D and one billion unknowns in 3D, solved on few thousands cores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amestoy, P., Duff, I., L’Excellent, J.Y., Koster, J.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amestoy, P., Guermouche, A., L’Excellent, J.Y., Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006)

    Article  MathSciNet  Google Scholar 

  3. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33(4), 24–27 (2007)

    Google Scholar 

  4. Cai, X.C., Sarkis, M.: Restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21(2), 792–797 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chevalier, C., Pellegrini, F.: PT-Scotch: a tool for efficient parallel graph ordering. Parallel Comput. 34(6), 318–331 (2008)

    Article  MathSciNet  Google Scholar 

  6. Geuzaine, C., Remacle, J.F.: Gmsh: a 3-d finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hénon, P., Ramet, P., Roman, J.: PaStiX: a high performance parallel direct solver for sparse symmetric positive definite systems. Parallel Comput. 28(2), 301–321 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hernandez, V., Roman, J., Vidal, V.: SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351–362 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jolivet, P., Dolean, V., Hecht, F., Nataf, F., Prud’homme, C., Spillane, N.: High performance domain decomposition methods on massively parallel architectures with FreeFem++. J. Numer. Math. 20(4), 287–302 (2012)

    MATH  MathSciNet  Google Scholar 

  10. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  Google Scholar 

  11. Lehoucq, R., Sorensen, D., Yang, C.: ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, vol. 6. Society for Industrial and Applied Mathematics, Philadelphia (1998)

    Book  Google Scholar 

  12. Prud’homme, C., Chabannes, V., Doyeux, V., Ismail, M., Samake, A., Pena, G.: Feel++: a computational framework for Galerkin methods and advanced numerical methods. In: ESAIM: Proceedings, vol. 38, pp. 429–455 (2012)

    Article  MathSciNet  Google Scholar 

  13. Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener. Comput. Syst. 20(3), 475–487 (2004)

    Article  Google Scholar 

  14. Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., Scheichl, R.: A robust two-level domain decomposition preconditioner for systems of PDEs. C. R. Math. 349(23), 1255–1259 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tang, J., Nabben, R., Vuik, C., Erlangga, Y.: Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods. J. Sci. Comput. 39(3), 340–370 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Toselli, A., Widlund, O.: Domain Decomposition Methods—Algorithms and Theory. Series in Computational Mathematics, vol. 34. Springer, Berlin (2005)

    Google Scholar 

Download references

Acknowledgements

This work has been supported in part by ANR through COSINUS program (project PETALh no. ANR-10-COSI-0013 and projet HAMM no. ANR-10-COSI-0009). It was granted access to the HPC resources of TGCC@CEA made available within the Distributed European Computing Initiative by the PRACE-2IP, receiving funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement RI-283493.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Jolivet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Jolivet, P., Hecht, F., Nataf, F., Prud’homme, C. (2014). Overlapping Domain Decomposition Methods with FreeFem++ . In: Erhel, J., Gander, M., Halpern, L., Pichot, G., Sassi, T., Widlund, O. (eds) Domain Decomposition Methods in Science and Engineering XXI. Lecture Notes in Computational Science and Engineering, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-319-05789-7_28

Download citation

Publish with us

Policies and ethics