Abstract
In this note, the performances of a framework for two-level overlapping domain decomposition methods are assessed. Numerical experiments are run on Curie, a Tier-0 system for PRACE, for two second order elliptic PDE with highly heterogeneous coefficients: a scalar equation of diffusivity and the system of linear elasticity. Those experiments yield systems with up to ten billion unknowns in 2D and one billion unknowns in 3D, solved on few thousands cores.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amestoy, P., Duff, I., L’Excellent, J.Y., Koster, J.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)
Amestoy, P., Guermouche, A., L’Excellent, J.Y., Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006)
Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33(4), 24–27 (2007)
Cai, X.C., Sarkis, M.: Restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21(2), 792–797 (1999)
Chevalier, C., Pellegrini, F.: PT-Scotch: a tool for efficient parallel graph ordering. Parallel Comput. 34(6), 318–331 (2008)
Geuzaine, C., Remacle, J.F.: Gmsh: a 3-d finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)
Hénon, P., Ramet, P., Roman, J.: PaStiX: a high performance parallel direct solver for sparse symmetric positive definite systems. Parallel Comput. 28(2), 301–321 (2002)
Hernandez, V., Roman, J., Vidal, V.: SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351–362 (2005)
Jolivet, P., Dolean, V., Hecht, F., Nataf, F., Prud’homme, C., Spillane, N.: High performance domain decomposition methods on massively parallel architectures with FreeFem++. J. Numer. Math. 20(4), 287–302 (2012)
Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)
Lehoucq, R., Sorensen, D., Yang, C.: ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, vol. 6. Society for Industrial and Applied Mathematics, Philadelphia (1998)
Prud’homme, C., Chabannes, V., Doyeux, V., Ismail, M., Samake, A., Pena, G.: Feel++: a computational framework for Galerkin methods and advanced numerical methods. In: ESAIM: Proceedings, vol. 38, pp. 429–455 (2012)
Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener. Comput. Syst. 20(3), 475–487 (2004)
Spillane, N., Dolean, V., Hauret, P., Nataf, F., Pechstein, C., Scheichl, R.: A robust two-level domain decomposition preconditioner for systems of PDEs. C. R. Math. 349(23), 1255–1259 (2011)
Tang, J., Nabben, R., Vuik, C., Erlangga, Y.: Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods. J. Sci. Comput. 39(3), 340–370 (2009)
Toselli, A., Widlund, O.: Domain Decomposition Methods—Algorithms and Theory. Series in Computational Mathematics, vol. 34. Springer, Berlin (2005)
Acknowledgements
This work has been supported in part by ANR through COSINUS program (project PETALh no. ANR-10-COSI-0013 and projet HAMM no. ANR-10-COSI-0009). It was granted access to the HPC resources of TGCC@CEA made available within the Distributed European Computing Initiative by the PRACE-2IP, receiving funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement RI-283493.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Jolivet, P., Hecht, F., Nataf, F., Prud’homme, C. (2014). Overlapping Domain Decomposition Methods with FreeFem++ . In: Erhel, J., Gander, M., Halpern, L., Pichot, G., Sassi, T., Widlund, O. (eds) Domain Decomposition Methods in Science and Engineering XXI. Lecture Notes in Computational Science and Engineering, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-319-05789-7_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-05789-7_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05788-0
Online ISBN: 978-3-319-05789-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)