Skip to main content

DG Discretization of Optimized Schwarz Methods for Maxwell’s Equations

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XXI

Abstract

We study here optimized Schwarz domain decomposition methods for solving the time-harmonic Maxwell equations discretized by a discontinuous Galerkin (DG) method. Due to the particularity of the latter, a discretization of a more sophisticated Schwarz method is not straightforward. A strategy of discretization is shown in the framework of a DG weak formulation, and the equivalence between multi-domain and single-domain solutions is proved. The proposed discrete framework is then illustrated by some numerical results through the simulation of two-dimensional propagation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alonso-Rodriguez, A., Gerardo-Giorda, L.: New nonoverlapping domain decomposition methods for the harmonic Maxwell system. SIAM J. Sci. Comput. 28(1), 102–122 (2006)

    Article  MathSciNet  Google Scholar 

  2. Arnold, D., Brezzi, F., Cockburn, B., Marini, L.: Unified analysis of Discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chevalier, P., Nataf, F.: An OO2 (Optimized Order 2) method for the Helmholtz and Maxwell equations. In: 10th International Conference on Domain Decomposition Methods in Science and in Engineering, Boulder, pp. 400–407. AMS, Providence (1997)

    Google Scholar 

  4. Collino, P., Delbue, G., Joly, P., Piacentini, A.: A new interface condition in the non-overlapping domain decomposition for the Maxwell equations. Comput. Methods Appl. Mech. Eng. 148, 195–207 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Després, B.: Décomposition de domaine et problème de Helmholtz. C.R. Acad. Sci. Paris 1(6), 313–316 (1990)

    Google Scholar 

  6. Després, B., Joly, P., Roberts, J.: A domain decomposition method for the harmonic Maxwell equations. In: Iterative Methods in Linear Algebra, pp. 475–484. North-Holland, Amsterdam (1992)

    Google Scholar 

  7. Dolean, V., Fol, H., Lanteri, S., Perrussel, R.: Solution of the time-harmonic Maxwell equations using discontinuous Galerkin methods. J. Comput. Appl. Math. 218(2), 435–445 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dolean, V., Lanteri, S., Perrussel, R.: A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods. J. Comput. Phys. 227(3), 2044–2072 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dolean, V., Gerardo-Giorda, L., Gander, M.J.: Optimized Schwarz methods for Maxwell equations. SIAM J. Sci. Comput. 31(3), 2193–2213 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dolean, V., Bouajaji, M.E., Gander, M.J., Lanteri, S., Perrussel, R.: Discontinuous Galerkin discretizations of Optimized Schwarz methods for solving the time-harmonic Maxwell equations (2014, in preparation)

    Google Scholar 

  11. El Bouajaji, M., Dolean, V., Gander, M.J., Lanteri, S.: Optimized Schwarz methods for the time-harmonic Maxwell equations with damping. SIAM J. Sci. Comput. 34(4), 2048–2071 (2012)

    Article  MathSciNet  Google Scholar 

  12. Gander, M.J., Magoulès, F., Nataf, F.: Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24(1), 38–60 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hesthaven, J., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis and Applications. Springer, Berlin (2008)

    Book  Google Scholar 

  14. Lee, S.C., Vouvakis, M., Lee, J.F.: A non-overlapping domain decomposition method with non-matching grids for modeling large finite antenna arrays. J. Comput. Phys. 203(1), 1–21 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Peng, Z., Lee, J.F.: Non-conformal domain decomposition method with second-order transmission conditions for time-harmonic electromagnetics. J. Comput. Phys. 229(16), 5615–5629 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Peng, Z., Rawat, V., Lee, J.F.: One way domain decomposition method with second order transmission conditions for solving electromagnetic wave problems. J. Comput. Phys. 229(4), 1181–1197 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rawat, V., Lee, J.F.: Nonoverlapping domain decomposition with second order transmission condition for the time-harmonic Maxwell’s equations. SIAM J. Sci. Comput. 32(6), 3584–3603 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victorita Dolean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bouajaji, M.E., Dolean, V., Gander, M.J., Lanteri, S., Perrussel, R. (2014). DG Discretization of Optimized Schwarz Methods for Maxwell’s Equations. In: Erhel, J., Gander, M., Halpern, L., Pichot, G., Sassi, T., Widlund, O. (eds) Domain Decomposition Methods in Science and Engineering XXI. Lecture Notes in Computational Science and Engineering, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-319-05789-7_18

Download citation

Publish with us

Policies and ethics