Advertisement

Designing Sustainable Wastewater Reuse Systems: Towards an Agroecology of Wastewater Irrigation

  • Philipp Weckenbrock
  • Graham Alabaster
Chapter

Abstract

One of the challenges of population growth and rapid urbanization processes is how to deal with the ever-increasing volumes of wastewater. Because of high costs of conventional technical wastewater treatment facilities, only the wealthiest countries can treat most of their wastewater. The largest part of the world’s wastewater enters the environment untreated. Centralized wastewater collection and treatment also impacts downstream use. New opportunities for decentralized treatment and reuse, particularly in smaller urban centres can increase reuse opportunities significantly. Recently, more emphasis has been put on potential benefits of wastewater reuse in agriculture. However, what works and what doesn’t depends on a range of factors concerning the general context of each scheme (including soil, climate, etc.), as well as on the specific crops chosen. More research is therefore needed on crop types and combinations of crops suitable for wastewater irrigation. No single plant can flourish in varying degrees of water quality while at the same time resisting pests and diseases, absorbing contaminants from wastewater and soils and producing abundant harvests. Only a variety of plants grown in combination can fulfil all these functions. A sustainable agricultural system under wastewater irrigation must therefore be a multicropping system. In order to design such a sustainable wastewater reuse scheme, agroecological principles and methods should be used.

Keywords

Agroecology Agroecosystems Agroforestry Nexus Salinity Wastewater irrigation Wastewater reuse systems Wastewater Water-energy-food nexus 

References

  1. ABTN. (1997). Tanques sépticos - Unidades de tratamento complementar e disposição final dos efluentes líquidos - Projeto, construção e operação. Rio de Janeiro, Brazil: Associação Brasileira de Normas Técnicas.Google Scholar
  2. Adjaye-Gbewonyo, K. (2008). Farmers’ perceptions of benefits and risks from wastewater irrigation in Accra, Ghana. Urban Agriculture Magazine, 20, 27–28.Google Scholar
  3. Altieri, M. A. (1999a). Applying agroecology to enhance the productivity of peasant farming systems in Latin America. Environment, Development and Sustainability, 1, 197–217.CrossRefGoogle Scholar
  4. Altieri, M. A. (1999b). The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems & Environment, 74(1), 19–31.CrossRefGoogle Scholar
  5. Altieri, M. A. (2002). Agroecology: the science of natural resource management for poor farmers in marginal environments. Agriculture, Ecosystems & Environment, 1971(93), 1–24.CrossRefGoogle Scholar
  6. Altieri, M. A. (2012). The scaling up of agroecology: Spreading the hope for food sovereignty and resiliency. SOCLA.Google Scholar
  7. Amerasinghe, P., Weckenbrock, P., Simmons, R., Acharya, S. & Drescher, A. (2009). An atlas of water quality, health and agronomic risks and benefits associated with “wastewater” irrigated agriculture: A study from the banks of the Musi River, India.Google Scholar
  8. Amoah, P., Keraita, B., Akple, M., Drechsel, P., Abaidoo, R. C. & Konradsen, F. (2011). Low-cost options for reducing consumer health risks from farm to fork where crops are irrigated with polluted water in West Africa. IWMI Research Report, 141. Colombo, Sri Lanka: International Water Management Institute.Google Scholar
  9. Asano, T. & Levine, A. D. (1998). Wastewater reclamation, recycling, and reuse: an introduction. In Asano, T. (Ed.) Wastewater reclamation and reuse. Lancaster, PA, Technomic Publishing Company.Google Scholar
  10. Ayers, R. S. & Westcot, D. W. (1985). Water quality for agriculture. FAO Irrigation and Drainage Paper, 21. Rome: FAO.Google Scholar
  11. Bahri, A. (2009). Managing the other side of the water cycle: Making wastewater an asset. Mölnlycke, Sweden: Global Water Partnership.Google Scholar
  12. Bahri, A., Drechsel, P. & Brissaud, F. (2008). Water reuse in Africa: Challenges and opportunities. First African water week, “Accelerating Water Security for Socio-Economic Development of Africa”, Tunis, Tunisia.Google Scholar
  13. Bates, B. C., Kundzewicz, Z. W., Wu, S. & Palutikof, J. P. (2008). Climate change and water. Technical paper of the Intergovernmental panel on climate change. IPCC Technical Paper, 6. Geneva: IPCC.Google Scholar
  14. Bauder, T. A., Waskom, R. M., Sutherland, P. L. & Davis, J. G. (2011). Irrigation water quality criteria. Irrigation Fact Sheet, 0.506. Colorado State University Extension.Google Scholar
  15. Boelee, E. (Ed.). (2011). Ecosystems for water and food security. Nairobi and Colombo: UNEP/IWMI.Google Scholar
  16. Bradford, A., Brook, R. & Hunshal, C. S. (2002). Crop selection and wastewater irrigation. Urban Agriculture Magazine, 8.Google Scholar
  17. Bradford, A., Brook, R. & Hunshal, C. S. (2003). Wastewater irrigation in Hubli-Dharward, India: Implications for health and livelihoods. Environment & Urbanization, 15(2), 157–170.Google Scholar
  18. Buechler, S., Devi, G., & Raschid, L. (2002). Livelihoods and wastewater irrigated agriculture along the Musi River in Hyderabad City, Andhra Pradesh, India. Urban Agriculture Magazine, 8, 14–17.Google Scholar
  19. Buechler, S., Mekala, G. D., & Keraita, B. (2006). Wastewater use for urban and peri-urban agriculture. In R. van Veenhuizen (Ed.), Cities farming for the future, urban agriculture for green and productive cities. Ottawa: RUAF Foundation, IDRC and IIRR.Google Scholar
  20. Carr, R. (2005). WHO guidelines for safe wastewater use—more than just numbers. Irrigation and Drainage, 54, 103–111.CrossRefGoogle Scholar
  21. Carr, R. M., Blumenthal, U. J., & Mara, D. D. (2004a). Guidelines for the safe use of wastewater in agriculture: Revisiting WHO guidelines. Water Science and Technology, 50(2), 31–38.Google Scholar
  22. Carr, R. M., Blumenthal, U. J., & Mara, D. D. (2004b). Health guidelines for the use of wastewater in agriculture: developing realistic guidelines. In C. Scott, N. I. Faruqui, & L. Rashid-Sally (Eds.), Wastewater use in irrigated agriculture: Coordinating the livelihood and environmental realities. Wallingford: IWMI/IDRC-CRDI/CABI.Google Scholar
  23. Clemett, A. E. V. & Ensink, J. H. J. (2006). Farmer driven wastewater treatment: A case study from Faisalabad, Pakistan. 32nd WEDC International Conference, Colombo, Sri Lanka.Google Scholar
  24. CNRH (2005). RESOLUÇÃO Nº. 54, DE 28 DE NOVEMBRO DE 2005—Estabelece critérios gerais para reuso de água potável. In C. N. D. R. Hídricos (Ed.).Google Scholar
  25. Cook, S. M., Khan, Z. R., & Pickett, J. A. (2007). The use of push-pull strategies in integrated pest management. Annual Review of Entomology, 52, 375–400.CrossRefGoogle Scholar
  26. Cornish, G. A., & Kielen, N. C. (2004). Wastewater irrigation—Hazard or lifeline? Empirical results from Nairobi, Kenya and Kumasi, Ghana. In C. Scott, N. I. Faruqui, & L. Rashid-Sally (Eds.), Wastewater use in irrigated agriculture: Coordinating the livelihood and environmental realities. Wallingford: IWMI/IDRC-CRDI/CABI.Google Scholar
  27. da Costa e Silva, J. C., Bemvindo Gomes, R., Rodrigues Pimentel, F. C., Silveira Britto Júnior, A. O. & Morales-Torres, I. M. (2002). Estudo complemantare de caso brasileiro Conjunto Renascer, Fortaleza, Estado do Ceará. IDRC, OPS/HEP/CEPIS.Google Scholar
  28. Dalgaard, T., Hutchings, N. J., & Porter, J. R. (2003). Agroecology, scaling and interdisciplinarity. Agriculture, Ecosystems & Environment, 100(1), 39–51.CrossRefGoogle Scholar
  29. de Lima Rego, J., Lima de Oliveira, E. L., Franklin Chaves, A., Bezerra Araújo, A. P., Lima Bezerra, F. M., Bezerra dos Santos, A., et al. (2005). Uso de esgoto doméstico tratado na irrigação da cultura da melancia. Revista Brasileira de Engenharia Agrícola e Ambiental, 9, 155–159.Google Scholar
  30. de Schutter, O. (2011). Report submitted by the special rapporteur on the right to food. United Nations General Assembly.Google Scholar
  31. Dimitriou, I., & Aronsson, P. (2005). Willows for energy and phytoremediation in Sweden. Unasylva, 56(2), 47.Google Scholar
  32. Drechsel, P., Blumenthal, U. J., & Keraita, B. (2002). Balancing health and livelihoods: Adjusting wastewater irrigation guidelines for resource-poor countries. Urban Agriculture Magazine, 8, 7–9.Google Scholar
  33. Dufumier, M. (2010). Agro-ecologie et developpement durable. Montpellier, France: Innovation and Sustainable Development in Agriculture and Food.Google Scholar
  34. El-Gamal, T. (2013). Lake Manzala engineered wetland. Tehran, Iran: Safe Use of Wastewater in Agriculture International Wrap-up Event.Google Scholar
  35. EMBRAPA. (2006). Marco referencial em agroecologia. Brasília, Brazil: Empresa Brasileira de Pesquisa Agropecuária.Google Scholar
  36. Ensink, J. H. J. (2006). Wastewater quality and the risk of hookworm infection in Pakistani and Indian sewage farmers. PhD thesis, London: University of London.Google Scholar
  37. Ensink, J. H. J., Mahmood, T., & Dalsgaard, A. (2007). Wastewater-irrigated vegetables: Market handling versus irrigation water quality. Tropical Medicine & International Health, 12(2), 2–7.CrossRefGoogle Scholar
  38. Ensink, J. H. J., Mahmood, T., Hoek, W. V. D., Raschid-Sally, L. & Amerasinghe, F. P. (2004a). A nationwide assessment of wastewater use in Pakistan: An obscure activity or a vitally important one? Water Policy, 6, 197–206.Google Scholar
  39. Ensink, J. H. J., Simmons, R. W., & van der Hoek, W. (2004b). Wastewater use in Pakistan: The cases of Haroonabad and Faisalabad. In C. Scott, N. I. Faruqui, & L. Rashid-Sally (Eds.), Wastewater use in irrigated agriculture: Coordinating the livelihood and environmental realities. Wallingford: IWMI/IDRC-CRDI/CABI.Google Scholar
  40. Ensink, J. H. J., & van der Hoek, W. (2007). Editorial: New international guidelines for wastewater use in agriculture. Tropical Medicine & International Health, 12(5), 575–577.CrossRefGoogle Scholar
  41. Ensink, J. H. J., van der Hoek, W., Matsuno, Y., Munir, S. & Aslam, M. R. (2003). Use of untreated wastewater in peri-urban agriculture in Pakistan: Risks and opportunities. IWMI.Google Scholar
  42. Espiritu Limay, C. G. (2013). Aguas residuales domesticas de la planta de tratamiento de aguas residuales domesticas (PTAR) de Santa Clara para riego de cultivos en Lima. Tehran, Iran: Safe Use of Wastewater in Agriculture International Wrap-up Event.Google Scholar
  43. FAO. (1997). Irrigation in the near East region in figures. Rome: FAO.Google Scholar
  44. FAO. (2008a). Current world fertilizer trends and outlook to 2011/12. Rome: FAO.Google Scholar
  45. FAO. (2008b). Diversity of experiences: understanding change in crop and seed diversity. Rome: FAO.Google Scholar
  46. Faruqui, N. I., Scott, C. A., & Raschid-Sally, L. (2004). Confronting the realities of wastewater use in irrigated agriculture: Lessons learned and recommendations. In C. Scott, N. I. Faruqui, & L. Rashid-Sally (Eds.), Wastewater use in irrigated agriculture: Coordinating the livelihood and environmental realities. Wallingford: IWMI/IDRC-CRDI/CABI.Google Scholar
  47. Fattal, B., Lampert, Y., & Shuval, H. (2004). A fresh look at microbial guidelines for wastewater irrigation in agriculture: A risk-assessment and cost-effectiveness approach. In C. Scott, N. I. Faruqui, & L. Rashid-Sally (Eds.), Wastewater use in irrigated agriculture: Coordinating the livelihood and environmental realities. Wallingford: IWMI/IDRC-CRDI/CABI.Google Scholar
  48. Furedy, C., & Ghosh, D. (1984). Resource-conserving traditions and waste disposal: The garbage farms and sewage-fed fisheries of Calcutta. Conservation & Recycling, 7(2), 159–165.CrossRefGoogle Scholar
  49. Ghosh, D. (2005). Ecology and traditional wetland practice: Lessons from wastewater utilisation in the East Calcutta Wetlands. Kolkata: Worldview.Google Scholar
  50. Gleick, P. (1996). Water resources. In S. H. Schneider (Ed.), The encyclopedia of climate and weather. New York: Oxford University Press.Google Scholar
  51. Gleick, P. H., Cooley, H., Morikawa, M., Morrison, J., & Palaniappan, M. (Eds.). (2009). The world’s water, 2008–2009: The biennial report on freshwater resources. Washington, DC: Island Press.Google Scholar
  52. Gliessman, S. R. (2007). Agroecology: The ecology of sustainable food systems. Boca Raton, Florida: CRC.Google Scholar
  53. Goodin, J. R., Epstein, E., McKell, C. M., & O’Leary, J. W. (1990). Saline agriculture: salt-tolerant plants for developing countries. Washington, DC: National Academy Press.Google Scholar
  54. Havelaar, A., Blumenthal, U. J., Strauss, M., Kay, D., & Bartram, J. (2001). Guidelines: The current position. In L. Fewtrell & J. Bartram (Eds.), Water quality: Guidelines, standards and health: Assessment of risk and risk management for water-related infectious disease. London: IWA publishing.Google Scholar
  55. Holt-Giménez, E. (2006). Campesino a campesino: Voices from Latin America’s farmer to farmer movement for sustainable agriculture. Food First Books.Google Scholar
  56. Hunshal, C. S., Salakinkop, S. R., & Brook, R. M. (1997). Sewage irrigated vegetable production systems around Hubli-Dharwad, Karnataka, India. Kasetsart Journal (Natural Sciences), 32(5), 1–8.Google Scholar
  57. Hussain, I., Raschid, L., Hanjra, M. A., Marikar, F. & van der Hoek, W. (2001). A framework for analyzing socioeconomic, health and environmental impacts of wastewater use in agriculture in developing countries. IWMI.Google Scholar
  58. IAASTD. (2009). Agriculture at a crossroads: Executive summary of the synthesis report. Washington DC: International Assessment of Agricultural Knowledge, Science and Technology for Development.Google Scholar
  59. IWMI (2003). Confronting the realities of wastewater use in agriculture. IWMI.Google Scholar
  60. IWMI. (2006). Recycling realities: Managing health risks to make wastewater an asset. IWMI.Google Scholar
  61. Jacobi, J., Drescher, A. W., Amerasinghe, P. H., & Weckenbrock, P. (2009). Agricultural biodiversity: Strengthening livelihoods in periurban Hyderabad. India. Urban Agriculture Magazine, 22, 45–47.Google Scholar
  62. Jia, S., Yang, H., Zhang, S., Wang, L. & Xia, J. (2006). Industrial water use Kuznets Curve. Evidence from industrialized countries and implications for developing countries. Water Resources Planning and Management, 132(3), 183–191.Google Scholar
  63. Jimenez, B. (2008). Water reuse in Latin America and the Caribbean. In B. Jimenex & T. Asano (Eds.), Water reuse: An international survey of current practice, issues and needs. London: IWA Publishing.Google Scholar
  64. Jones, A., Pimbert, M., & Jiggins, J. (2010). Virtuous circles: Values, systems, sustainability. London: IIED.Google Scholar
  65. Kauvala, S. (2007). Cutting off a lifeline. Film. India; Germany: Nexus.Google Scholar
  66. Keraita, B., Abaidoob, R. C., Beernaerts, I., Koo-Oshimad, S., Amoaha, P., Drechsel, P., et al. (2012a). Safe re-use practices in wastewater-irrigated Urban vegetable farming in Ghana. Journal of Agriculture, Food Systems, and Community Development, 2(4), 147–158.CrossRefGoogle Scholar
  67. Keraita, B., Akatse, J., Kinane, M., K., O. C., Mateo-Sagasta, J., Beernaerts, I., Koo-Oshima, S., Youdeowei, A., Fredrix, M., Neate, P., de Graft-Johnson, E., Ato., K. G., Mander, P. & Morgan, J. (2012b). On-farm practices for the safe use of wastewater in urban and peri-urban horticulture: a training handbook for farmer field schools. Rome, Italy: FAO.Google Scholar
  68. Keraita, B., Drechsel, P., Agyekum, W., & Hope, L. (2007). In search of safer irrigation water for urban vegetable farming in Ghana. Urban Agriculture Magazine, 19, 17–19.Google Scholar
  69. Kurian, M. & Ardakanian, R. (2013). Institutional arrangements and governance structures that advance the nexus approach to management of environmental resources. Advancing a nexus approach to the sustainable management of water, soil and waste: Draft white book. Dresden, Germany: United Nations University.Google Scholar
  70. Kurian, M., Ratna Reddy, V., Dietz, T., & Brdjanovic, D. (2013). Wastewater re-use for peri-urban agriculture: A viable option for adaptive water management? Sustainability Science, 8, 47–59.CrossRefGoogle Scholar
  71. Larbi, K. (2013). Bonnes pratiques: Réutilisation des eaux usées épurées au niveau de la ville de Settat Maroc. Tehran, Iran: Safe Use of Wastewater in Agriculture International Wrap-up Event.Google Scholar
  72. Mara, D. D., & Cairncross, S. (1989). Guidelines for the safe use of wastewater and excreta in agriculture and aquaculture: Measures for public health protection. Geneva, Switzerland: WHO.Google Scholar
  73. Mateo-Sagasta, J., Medlicott, K., Qadir, M., Raschid-Sally, L., Drechsel, P. & Liebe, J. (2013). Proceedings of the UN-water project on the safe use of wastewater in agriculture. Bonn, Germany: UNW-DPC.Google Scholar
  74. McIntyre, B. D., Herren, H. R., Wakhungu, J., & Watson, R. T. (Eds.). (2009). Agriculture at a crossroads. Washington DC: Island Press.Google Scholar
  75. Melfi, A. J. & Montes, C. R. (2008). Uso de efluentes de sistemas de tratamento de esgoto na agricultura. CAIS 2008—Congresso em Celebração ao Ano Internacional do Saneamento, Sao Paulo, Brazil.Google Scholar
  76. Mierzwa, J. C. (2004). Uso de águas residuárias na agricultura—O caso do Brasil. Passo Fundo, Brazil: Simpósio Nacional Sobre o Uso da Água na Agricultura.Google Scholar
  77. Molden, D. (2007). Water for food water for life: A comprehensive assessment of water management in agriculture. London: Earthscan.Google Scholar
  78. Molle, F. & Berkhoff, J. (2006). Cities versus agriculture. Revisiting intersectoral water transfers, potential gains and conflicts. Comprehensive Assessment Research Report, 10. Colombo, Sri Lanka: IWMI.Google Scholar
  79. Monem, M. J. (2013). Best practice: Wastewater reuse in Mash-had plain. Tehran, Iran: Safe Use of Wastewater in Agriculture International Wrap-up Event.Google Scholar
  80. Moscoso Cavallini, J. (2013). Simple, low-cost reservoirs to reduce vegetable contamination. In L. Peru (Ed.), Safe use of wastewater in agriculture. Tehran, Iran: International Wrap-up Event.Google Scholar
  81. Moscoso Cavallini, J. & Egocheaga Young, L. (2002). Integrated systems for the treatment and recycling of waste water in Latin America: Reality and potential. Lima, Peru: IDRC–PAHO/HEP/CEPIS.Google Scholar
  82. Nair, P. K. R. (1991). State-of-the-art of agroforestry systems. Forest Ecology and Management, 45(1–4), 5–29.CrossRefGoogle Scholar
  83. Pachauri, R. K., & Reisinger, A. (Eds.). (2008). Climate change 2007: Synthesis report. Geneva, Switzerland: IPCC.Google Scholar
  84. Pearce, F. (2008). Sewage that’s too precious to waste. New Scientist, 199(2670), 14.CrossRefGoogle Scholar
  85. Pescod, M. B. (1992). Wastewater treatment and use in agriculture. FAO irrigation and drainage paper, 47. Rome: FAO.Google Scholar
  86. Petersen, P., Mussoi, E. M. & Soglio, F. D. (2013). Institutionalization of the agroecological approach in Brazil: Advances and challenges. Agroecology and Sustainable Food Systems, 37, 103–114.Google Scholar
  87. Raschid-Sally, L. (2010). The role and place of global surveys for assessing wastewater irrigation. Irrigation and Drainage Systems (Online edition).Google Scholar
  88. Raschid-Sally, L. & Jayakody, P. (2008). Drivers and characteristics of wastewater agriculture in developing countries—results from a global assessment. International Water Management Institute.Google Scholar
  89. Rosegrant, M. W., Ringler, C., & Zhu, T. (2009). Water for agriculture: Maintaining food security under growing scarcity. Annual Review of Environment and Resources, 34, 205–222.CrossRefGoogle Scholar
  90. Sandoval, T. S., Mogol, G., Rivera, M. & Alamban, R. (2013). The case of absolut distillers Inc. in the Philippines: Use of wastewater as fertilizer. Safe Use of Wastewater in Agriculture. Tehran, Iran: International Wrap-up Event.Google Scholar
  91. Satoa, T., Qadir, M., Yamamotoe, S., Endoe, T., & Zahoor, A. (2013). Global, regional, and country level need for data on wastewater generation, treatment, and use. Agricultural Water Management, 130, 1–13.CrossRefGoogle Scholar
  92. Scheierling, S. M., Bartone, C., Mara, D. D. & Drechsel, P. (2010). Improving wastewater use in agriculture—an emerging priority. World Bank.Google Scholar
  93. Shelef, G. (1991). Wastewater reclamation and water resources management. Water Science and Technology, 24(4), 251–265.Google Scholar
  94. Siebe, C. (2013). Reuse of untreated municipal wastewater for agriculture over a century at the Mezquital Valley, Mexico. Safe Use of Wastewater in Agriculture. Tehran, Iran: International Wrap-up Event.Google Scholar
  95. Simmons, R., Qadir, M. & Drechsel, P. (2010). Farm-based measures for reducing human and environmental health risks from chemical constituents in wastewater. Wastewater irrigation and health: Assessing and mitigating risk in low-income countries. Earthscan/IWMI/IDRC.Google Scholar
  96. SS/SMA/SRHS (2013). Proposta de disciplinamento do Reuso Direto Nâo Potável de Água Proveniente de Estações de Tratamento de Esgoto Sanitário para Fins Urbanos. Câmara Ambiental do Setor de Saneamento.Google Scholar
  97. Tanji, K. K., & Kielen, N. C. (2002). Agricultural drainage water management in arid and semi-arid areas. Rome: FAO.Google Scholar
  98. UNDP (2006). Beyond scarcity: Power, poverty and the global water crisis. Human Development Report 2006, New York, UNDP.Google Scholar
  99. UNEP and GEC. (2004). Water and wastewater reuse: An environmentally sound approach for sustainable urban water management. Osaka/Shiga: UNEP-DTIE.Google Scholar
  100. UNPD (2007). World urbanization prospects: The 2007 revision population database. United Nations Population Division. Retrieved March 17, 2014, from http://esa.un.org/unup
  101. UNU-FLORES (2013). Advancing a nexus approach to the sustainable management of water, soil and waste (draft white book). Dresden, Germany: United Nations University.Google Scholar
  102. USEPA. (2012). Guidelines for water reuse. Washington, DC: U.S. Environmental Protection Agency.Google Scholar
  103. van der Hoek, W. (2004). A framework for a global assessment of the extent of wastewater irrigation: The need for a common wastewater typology. In C. Scott, N. I. Faruqui, & L. Rashid-Sally (Eds.), Wastewater use in irrigated agriculture: Coordinating the livelihood and environmental realities. Wallingford: IWMI/IDRC-CRDI/CABI.Google Scholar
  104. van der Hoek, W., Hassan, M. U., Ensink, J. H. J., Feenstra, S., Raschid-Sally, L., Munir, S., et al. (2002). Urban wastewater: A valuable resource for agriculture, a case study from Haroonabad. Pakistan: IWMI.Google Scholar
  105. Vandermeer, J. (1995). The ecological basis of alternative agriculture. Annual Review of Ecology and Systematics, 26, 201–224.CrossRefGoogle Scholar
  106. Warner, K. D. (2006). Extending agroecology: Grower participation in partnerships is key to social learning. Renewable Agriculture and Food Systems, 21(2), 84–94.CrossRefGoogle Scholar
  107. Weckenbrock, P. (2010). Making a virtue of necessity—wastewater irrigation in a periurban area near Faisalabad, Pakistan: A GIS based analysis of long-term effects on agriculture. PhD thesis, Germany: Albert-Ludwigs-Universität Freiburg.Google Scholar
  108. Weckenbrock, P., Evans, A., Majeed, M. Q., Ahmad, W., Bashir, N., & Drescher, A. (2011). Fighting for the right to use wastewater: what drives the use of untreated wastewater in a peri-urban village of Faisalabad, Pakistan? Water International, 36(4), 522–534.CrossRefGoogle Scholar
  109. Wezel, A., Bellon, S., Doré, T., Francis, C., Vallod, D., & David, C. (2009). Agroecology as a science, a movement and a practice. A review. Agronomy for Sustainable Development, 29, 503–515.CrossRefGoogle Scholar
  110. Wezel, A., Casagrande, M., Celette, F., Vian, J.-F., Ferrer, A. & Peigné, J. (2013). Agroecological practices for sustainable agriculture. A review. Agronomy for Sustainable Development.Google Scholar
  111. WHO. (2002). The World Health Report 2002: Reducing risks, promoting healthy life. Geneva: World Health Organization.Google Scholar
  112. WHO (2006a). Guidelines for the safe use of wastewater, excreta and greywater. Geneva: World Health Organization.Google Scholar
  113. WHO (2006b). Guidelines for the safe use of wastewater, excreta and greywater. Vol. II. Wastewater use in agriculture. Geneva: World Health Organization.Google Scholar
  114. World Resources Institute (2000). Urban and industrial land use by river basin. WRI. Retrieved December 3, 2010, from http://earthtrends.wri.org/text/water-resources/map-261.html

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.International Development ConsultantFreiburgGermany
  2. 2.Urban Basic Services BranchUN-HABITATNairobiKenya

Personalised recommendations