Skip to main content

The Water-Energy-Food Nexus: Enhancing Adaptive Capacity to Complex Global Challenges

Abstract

Multiple intersecting factors place pressure on planetary systems on which society and ecosystems depend. Climate change and variability, resource use patterns, globalization viewed in terms of economic enterprise and environmental change, poverty and inequitable access to social services, as well as the international development enterprise itself, have led to a rethinking of development that solely addresses economic growth. Fulfilling the essential human aspirations for quality of life, meaningful education, productive and rewarding work, harmonious relations, and sustainable natural resource use requires ingenuity, foresight and adaptability.

Keywords

  • Adaptive management
  • Anthropocene
  • Groundwater
  • Nexus approach
  • Nexus
  • Peri-urban agriculture
  • Resilience
  • Resource recovery
  • Sustainable Development Goals (SDGs)
  • Wastewater reuse
  • Water-energy-food nexus
  • WEF nexus
  • World Commission on Dams

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-05747-7_2
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-05747-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 1

Notes

  1. 1.

    Etymologically and linguistically, nexus is both the singular and the plural form.

  2. 2.

    See http://www.water-energy-food.org/ for more information.

  3. 3.

    UN Food and Agriculture Organisation—FAO with support from the Deutsche Gesellschaft für Internationale Zusammenarbeit—GIZ. See also http://nexus-assessment.info/ for more information.

  4. 4.

    See http://en.wikipedia.org/wiki/Nexum for more information.

  5. 5.

    For more information see http://en.wikipedia.org/wiki/Qanat.

  6. 6.

    See World Economic Forum 2011, Water Security: The water-energy-food-climate nexus.

References

  • Alam, A. (1988). Energy requirements of food production and utilization in the rural sector. In Food-energy nexus and ecosystem: Proceedings of the Second International Symposium on Food-Energy Nexus and Ecosystem, held in New Delhi, India, during February 12–14, 1986 (vol. 131, p. 270). Missouri, USA: South Asia Books.

    Google Scholar 

  • Bailey, R. (2011). Using an adapted Delphi methodology for defining low carbon futures. Bristol: Institute for Sustainability, Health and Environment, University of the West of England.

    Google Scholar 

  • Bakker, K. J. (2003). An uncooperative commodity: Privatizing water in England and Wales. Oxford: Oxford University Press.

    Google Scholar 

  • Batliwala, S. (1982). Rural energy scarcity and nutrition: A new perspective. Economic and Political Weekly, 17(9), 329–333.

    Google Scholar 

  • Berkes, F. (2002). Cross-scale institutional linkages: Perspectives from bottom up. In T. Dietz, N. Dolsak, E. Ostrom, & P. Stem (Eds.), The drama of the commons. Washington, DC: National Research Council.

    Google Scholar 

  • Berndes, G. (2002). Bioenergy and water—the implications of large-scale bioenergy production for water use and supply. Global Environmental Change, 12, 253–271.

    CrossRef  Google Scholar 

  • Bodkin, R.G. (1962). The wage-price productivity nexus. New Haven, CT: Cowles Foundation for Research in Economics, Yale University. (No. 147).

    Google Scholar 

  • Bogardi, J. J., Dudgeon, D., Lawford, R., Flinkerbusch, E., Meyn, A., Pahl-Wostl, C., et al. (2012). Water security for a planet under pressure: Interconnected challenges of a changing world call for sustainable solutions. Current Opinion in Environmental Sustainability, 4(1), 35–43.

    CrossRef  Google Scholar 

  • Brookfield, H., & Blaikie, P. (1987). Land degradation and society. London: Methuen.

    Google Scholar 

  • Carter, N. T. (2010). Energy’s water demand: Trends, vulnerabilities, and management. Washington, DC: Congressional Research Service.

    Google Scholar 

  • Clark, G., & Dear, M. (1984). State apparatus: Structures and language of legitimacy. London: Allen & Unwin.

    Google Scholar 

  • Dasgupta, S., Deichmann, U., Meisner, C., & Wheeler, D. (2005). Where is the poverty-environment nexus? Evidence from Cambodia, Lao PDR and Vietnam. World Development, 33(4), 617–638.

    CrossRef  Google Scholar 

  • Dewey, M. M., & Barr, L. (1962). Intercellular connection between smooth muscle cells: the nexus. Science, 137(3531), 670–672.

    CrossRef  CAS  Google Scholar 

  • Drechsel, P., Scott, C. A., Raschid, L., Redwood, M., & Bahri, A. (Eds.). (2010). Wastewater irrigation and health: Assessing and mitigating risks in low-income countries. London: Earthscan.

    Google Scholar 

  • Durant, R.F. & Holmes, M.D. (1985). Thou shalt not covet thy neighbor’s water: The Rio Grande Basin regulatory experience. Public Administration Review, pp. 821–831.

    Google Scholar 

  • Electric Power Research Institute (EPRI) (2002). U.S. Water consumption for power production; and U.S. electricity consumption for water supply & treatment. Palo Alto, CA: EPRI.

    Google Scholar 

  • Fischhendler, I. & Katz, D. (2012). The use of “security” jargon in sustainable development discourse: Evidence from UN commission on sustainable development. International Environmental Agreements: Politics, Law and Economics, pp. 1–22.

    Google Scholar 

  • Fisher, J., & Ackerman, F. (2011). The water-energy nexus in the western states: Projections to 2100. Somerville: Stockholm Environment Institute.

    Google Scholar 

  • Floerke, M., Teichert, E., & Baerlund, I. (2011). Future changes of freshwater needs in European power plants. Management of Environmental Quality, 22(1), 89–104.

    CrossRef  Google Scholar 

  • Gleick, P. H. (1994). Water and energy. In R. H. Socolow, D. Anderson, & J. Harte (Eds.), Annual review of energy and the environment, 19 (pp. 267–299). Palo Alto, CA: Annual Reviews Inc.

    Google Scholar 

  • Government Accountability Office (GAO) (2009). Energy-water nexus improvements to federal water use data would increase understanding of trends in power plant water use. Washington, DC: GAO-10-23.

    Google Scholar 

  • Granit, J., Fogde, M., Holger Hoff, S.E.I. & Joyce, J. (2013). Unpacking the water-energy-food nexus: Tools for assessment and cooperation along a continuum. Cooperation for a Water Wise World, p. 45.

    Google Scholar 

  • Green, D. (1981). Land of the underground rain: Irrigation on the Texas high plains, 1910–1970. Austin: University of Texas Press.

    Google Scholar 

  • Griffiths-Sattenspiel, B., & Wilson, W. (2009). The carbon footprint of water. Portland, OR: River Network.

    Google Scholar 

  • Gunn, E.L. (2009). Spain, water and climate change in COP 15 and beyond: Aligning mitigation and adaptation through innovation. Documentos de Trabajo Real Instituto Elcano de Estudios Internacionales y Estratégicos, Working Paper 65/2009.

    Google Scholar 

  • Hardy, L., Garrido, A., & Juana, L. (2012). Evaluation of Spain’s water-energy nexus. Water Resources Development, 28(1), 151–170.

    CrossRef  Google Scholar 

  • Hellegers, P., Zilberman, D., Steduto, P., & McCornick, P. (2008). Interactions between water, energy, food and environment: Evolving perspectives and policy issues. Water Policy, 10, 1–10.

    CrossRef  Google Scholar 

  • Hightower, M., & Pierce, S. A. (2008). The energy challenge. Nature, 452(20), 285–286.

    CrossRef  CAS  Google Scholar 

  • Hoff, H. (2011). Understanding the nexus. Background Paper for the Bonn 2011 Conference: The Water, Energy and Food Security Nexus. Stockholm Environment Institute, Stockholm.

    Google Scholar 

  • Ingram, H. M., Mann, D. E., Weatherford, G. D., & Cortner, H. J. (1984). Guidelines for improved institutional analysis in water resources planning. Water Resources Research, 20(3), 323–334.

    CrossRef  Google Scholar 

  • Kenney, D., & Wilkinson, R. (Eds.). (2011). The water-energy nexus in the American West. Cheltenham, UK: Edward Elgar.

    Google Scholar 

  • Kumar, D. M. (2005). Impact of electricity prices and volumetric water allocation on energy and groundwater demand management: analysis from western India. Energy Policy, 33, 39–51.

    CrossRef  Google Scholar 

  • Kurian, M. (2010). Making sense of human-environment interaction-policy guidance under conditions of imperfect data. In M. Kurian & P. Carney (Eds.), Peri-urban water and sanitation services—Policy, planning and method. Dordrecht: Springer.

    CrossRef  Google Scholar 

  • Kurian, M., & Dietz, T. (2013). Leadership on the commons: Wealth distribution, co-provision and service delivery. The Journal of Development Studies, 49, 1532. doi:10.1080/00220388.2013.822068.

    CrossRef  Google Scholar 

  • Kurian, M., Reddy, V., Dietz, T., & Brdjanovic, D. (2013). Wastewater reuse in peri-urban agriculture—A viable option for adaptive water management? Sustainability Science, 8(1), 47–59.

    CrossRef  Google Scholar 

  • Kurian, M., & Turral, H. (2010). Information’s role in adaptive groundwater management. In M. Kurian & P. Carney (Eds.), Peri-urban water and sanitation services- Policy, planning and method. Dordrecht: Springer.

    CrossRef  Google Scholar 

  • Lall, R. (2013). The nexus of soil, water and waste. Lecture Series –No. 1. UNU-FLORES, Dresden.

    Google Scholar 

  • Lankford, B. (2013). Resource efficiency complexity and the commons: The paracommons and paradoxes of natural resource losses, wastes and wastages. Oxford and New York: Routledge.

    Google Scholar 

  • Lazarus, J. (2010). Water/energy/food nexus: Sustaining agricultural production. Water Resources Impact, 12(3), 12–15.

    Google Scholar 

  • Leopold, L. & Maddock, T. (1954). The flood control controversy. New York: Ronald Press.

    Google Scholar 

  • Levidow, L. & Papaioannou, T. (2012). State imaginaries of the public good: Shaping UK innovation priorities for bioenergy. Environmental Science & Policy.

    Google Scholar 

  • Lofman, D., Petersen, M., & Bower, A. (2002). Water, energy and environment nexus: The California experience. International Journal of Water Resources Development, 18(1), 73–85.

    CrossRef  Google Scholar 

  • López-Gunn, E., De Stefano, L., & Llamas, M. R. (2012). The role of ethics in water and food security: Balancing utilitarian and intangible values14. Water Policy, 14(1), 89–105.

    CrossRef  Google Scholar 

  • Madrid, C., Cabello, V., & Giampietro, M. (2013). Water-use sustainability in socioecological systems: A multiscale integrated approach. BioScience, 63(1), 14–24.

    CrossRef  Google Scholar 

  • Malik, R. P. S. (2002). Water-energy nexus in resource-poor economies: the Indian experience. International Journal of Water Resources Development, 18(1), 47–58.

    CrossRef  Google Scholar 

  • Maslow, A.H. (1943). A theory of human motivation. Psychological Review, 50(4), 370–96. Retrieved January 18, 2014, from http://psychclassics.yorku.ca/Maslow/motivation.htm.

  • Mears, D. P. (2001). The immigration-crime nexus: Toward an analytic framework for assessing and guiding theory, research, and policy. Sociological Perspectives, 44(1), 1–19.

    CrossRef  Google Scholar 

  • Mollinga, P., Hammond, L., Lindley, A., Mehta, L., Allouche, J. & Nicol, A. (2012). Not another nexus? critical thinking on the ‘new security convergence’ in energy, food, climate and water, October 26, 2012. Centre for Water and Development, University of London, Institute for Development Studies, and the STEPS Centre at the University of Sussex.

    Google Scholar 

  • National Research Council (NRC). (2007). Water implications of biofuels production in the United States. Washington, DC: National Academies Press.

    Google Scholar 

  • National Research Council (NRC) (2011). Renewable fuel standard: Potential economic and environmental effects of U.S. biofuel policy summary. Washington, DC: National Academies Press.

    Google Scholar 

  • National Research Council (NRC). Policy Division Board on Sustainable Development (1999). Our common journey: A transition toward sustainability. Washington, DC: National Academies Press.

    Google Scholar 

  • North, D. (1995). The new institutional economics and third world development. In J. Harris, J. Hunter, & C. Lewis (Eds.), The new institutional economics and third world development. London and New York: Routledge.

    Google Scholar 

  • Ostrom, E. (1990). Governing the commons: The evolution of institutions for collective action. Cambridge: Cambridge University Press.

    CrossRef  Google Scholar 

  • Padmanaban, S. & Sarkar, A. (2001). Electricity demand side management (DSM) in India: A strategic and policy perspective. Office of Energy, Environmental, and Enterprise; U.S. Agency for International Development—India. Retrieved January 18, 2014, from http://www.usaid.gov/in/whatsnew/articles/dsm.htm.

  • Parikh, J. K. (1986). From farm gate to food plate: Energy in post-harvest food systems in south Asia. Energy Policy, 14(4), 363–372.

    CrossRef  Google Scholar 

  • Peluso, N. (1992). Rich people, poor forests: Resource control and resistance in Java. Los Angeles: University of California Press.

    Google Scholar 

  • Phy, S. (2010). Foreign aid-corruption nexus in Cambodia: Its consequences on the propensity of civil war. Verlag: GRIN.

    Google Scholar 

  • Pimentel, D. (1985). Energy and agriculture: Their interacting futures. In M. Lévy & J. L. Robinson (Eds.), Policy implications of global models. New York: Harwood Academic Publishers for the United Nations University.

    Google Scholar 

  • Rockström, J., et al. (2009). A safe operating space for humanity. Nature, 461, 472–475.

    CrossRef  Google Scholar 

  • Sachs, J. D. (2012). From millennium development goals to sustainable development goals. Lancet, 379, 2206–2211.

    CrossRef  Google Scholar 

  • Sachs, I. & Silk, D. (1990). Food and energy: Strategies for sustainable development. vi, 83 p, ISBN: 92-808-0757-9.

    Google Scholar 

  • Sant, G. & Dixit, S. (1996). Beneficiaries of IPS subsidy and impact of tariff hike. Economic and Political Weekly, pp. 3315–3321.

    Google Scholar 

  • Scott, C.A. (2011). The water-energy-climate nexus: Resources and policy outlook for aquifers in Mexico. Water Resources Research 47, W00L04, 1–18.

    Google Scholar 

  • Scott, C. A., El-Naser, H., Hagan, R. E., & Hijazi, A. (2003). Facing water scarcity in Jordan: Reuse, demand reduction, energy and transboundary approaches to assure future water supplies. Water International, 28(2), 209–216.

    CrossRef  Google Scholar 

  • Scott, C. A., Faruqui, N. I., & Raschid-Sally, L. (Eds.). (2004a). Wastewater use in irrigated agriculture: Confronting the livelihood and environmental realities. Wallingford: CAB International.

    Google Scholar 

  • Scott, C. A., Meza, F. J., Varady, R. G., Tiessen, H., McEvoy, J., & Garfin, G. M. (2013). Water security and adaptive management in the arid Americas. Annals of the Association of American Geographers, 103(2), 280–289.

    CrossRef  Google Scholar 

  • Scott, C. A., & Pasqualetti, M. J. (2010). Energy and water resources scarcity: Critical infrastructure for growth and economic development in Arizona and Sonora. Natural Resources Journal, 50(3), 645–682.

    Google Scholar 

  • Scott, C. A., & Shah, T. (2004). Groundwater overdraft reduction through agricultural energy policy: insights from India and Mexico. International Journal of Water Resources Development, 20(2), 149–164.

    CrossRef  Google Scholar 

  • Scott, C. A., Shah, T., Buechler, S. J., & Silva-Ochoa, P. (2004b). La fijación de precios y el suministro de energía para el manejo de la demanda de agua subterránea: enseñanzas de la agricultura mexicana. In M. Lévy & J. L. Robinson (Eds.), Hacia una Gestión Integral del Agua en México: Retos y Alternativas. Mexico City: Porrua Editores.

    Google Scholar 

  • Scott, C.A., Vicuña, S., Blanco-Gutiérrez, I., Meza, F. & Varela-Ortega, C. (2014). Irrigation efficiency and water-policy implications for river-basin resilience. Hydrology and Earth System Sciences, 18, 1339–1348.

    Google Scholar 

  • Shah, T. (2008). Taming the anarchy: Groundwater governance in South Asia. London: Routledge.

    Google Scholar 

  • Shah, T., Scott, C. A., Berkoff, J., Kishore, A., & Sharma, A. (2007a). Energy-irrigation nexus in South Asia: Pricing versus rationing as practical tool for efficient resource allocation. In F. Molle & J. Berkoff (Eds.), Irrigation water pricing: The gap between theory and practice. Wallingford: CAB International.

    Google Scholar 

  • Shah, T., Scott, C.A., Kishore, A. & Sharma, A. (2003). Energy-irrigation nexus in South Asia: Improving groundwater conservation and power sector viability. IWMI Research Report No. 70. International Water Management Institute, Colombo, Sri Lanka. doi:10.3910/2009.088.

  • Shah, T., Scott, C. A., Kishore, A., & Sharma, A. (2007b). Energy-irrigation nexus in South Asia: Improving groundwater conservation and power sector viability. In M. Giordano & K. G. Villholth (Eds.), The agricultural groundwater revolution: Opportunities and threats to development. Wallingford: CAB International.

    Google Scholar 

  • Siddiqi, A., & Anadon, L. D. (2011). The water energy nexus in Middle East and North Africa. Energy Policy, 39, 4529. doi:10.1016/j.enpol.2011.04.023.

    CrossRef  Google Scholar 

  • Siddiqi, A., & Wescoat, J. L, Jr. (2013). Energy use in large-scale irrigated agriculture in the Punjab province of Pakistan. Water International, 38(5), 571–586.

    CrossRef  Google Scholar 

  • Siegfried, T. U., Fishman, R., Modi, V., & Lall, U. (2008). An entitlement approach to address the water-energy-food nexus in rural India. AGU Fall. Meeting Abstracts, 1, 0846.

    Google Scholar 

  • Solomon, B. D. (1987). Paradoxes of western energy development: How can we maintain the land and the people if we develop? In C. M. McKell, D. G. Browne, E. C. Cruze, W. R. Freudenburg, R. L. Perrine, & F. Roach (Eds.), AAAS Selected Symposium. Boulder, CO: Westview Press.

    Google Scholar 

  • Sovacool, B. K., & Sovacool, K. E. (2009). Identifying future electricity-water tradeoffs in the United States. Energy Policy, 37, 2763–2773.

    CrossRef  Google Scholar 

  • Steffen, W., Grinevald, J., Crutzen, P., & McNeill, J. (2011). The anthropocene: Conceptual and historical perspectives. Philosophical Transactions Royal Society series A, 369, 842–867.

    CrossRef  Google Scholar 

  • UNU-FLORES. (2013). Academic work plan, Draft, Dresden, September.

    Google Scholar 

  • Varady, R. G., & Scott, C. A. (2013). How should we understand “water security”? Guest View. Arizona Water Resources, 21, 1–5.

    Google Scholar 

  • Wescoat Jr. J.L. (2000). Wittfogel east and west: Changing perspectives on water development in South Asia and the US, 1670-2000. In A.B. Murphy & D.L. Johnson (Eds.), Cultural Encounters with the Environment: Enduring and Evolving Geographic Themes (pp. 109–32). Rowman & Littlefield.

    Google Scholar 

  • Wescoat Jr. J. L. & Halvorson, J. (2000). Ex post evaluation of dams and related water projects: Patterns, problems and promise. South Africa: Report to the World Commission on Dams.

    Google Scholar 

  • Wescoat, J. L, Jr, & Halvorson, J. (2012). Emerging regional perspectives on water research and management: An introductory comment. Eurasian Geography and Economics, 53(1), 87–94.

    CrossRef  Google Scholar 

  • White, G. F. (1957). A perspective on river basin management. Law and Contemporary Problems, 22, 157–187.

    CrossRef  Google Scholar 

  • Whitehead, A. N. (1929). Process and reality. New York: Macmillan.

    Google Scholar 

  • Wigmore, J. H. (1943). The scope of the contract-concept. Columbia Law Review, 43(5), 569–574.

    CrossRef  Google Scholar 

  • Wolff, G., Cohen, R., & Nelson, B. (2004). Energy down the drain: The hidden costs of California’s water supply. Oakland, CA: Natural Resources Defense Council and Pacific Institute.

    Google Scholar 

  • World Commission on Dams. (2000). Dams and development: A new framework for decision-making. London and Sterling, VA: Earthscan.

    Google Scholar 

  • World Economic Forum. (2011). Water security: The water-energy-food-climate nexus. Washington, DC: Island Press.

    Google Scholar 

  • Zeitoun, M., Goulden, M. & Tickner, D. (2013). Current and future challenges facing transboundary river basin management. Wiley Interdisciplinary Reviews: Climate Change.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Scott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scott, C.A., Kurian, M., Wescoat, J.L. (2015). The Water-Energy-Food Nexus: Enhancing Adaptive Capacity to Complex Global Challenges. In: Kurian, M., Ardakanian, R. (eds) Governing the Nexus. Springer, Cham. https://doi.org/10.1007/978-3-319-05747-7_2

Download citation