Skip to main content

Bioremediation and Biotransformation of Carbon Nanostructures Through Enzymatic and Microbial Systems

  • Chapter
  • First Online:
Bioremediation in Latin America

Abstract

Nanomedicine, environmental sciences, waste water and soil technologies intensively use many carbon nanostructures, such as carbon nanotubes, graphenes, and fullerenes. Possibly, due to the several perspectives of use of these nanomaterials, approaches on toxicology and safety management have become the focus of intense interest, as the industrial production of these materials has grown enormously in the last few years; besides that short- and long-term behaviors are not yet fully understood. Our concerns involving these carbon-based nanomaterials are their stability and potential effects of their life cycles on environment. Following this focus, this review discusses the literature related to the biodegradability of these nanomaterials, mainly through enzymes, microorganisms and cells, in order to understand the actual status, and contributes to the uses of biocompatible and biodegradable functionalized carbon nanostructures. Moreover, this review address crucial aspects towards the use of these nanomaterials with reduced impact for animals and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen BL, Kichambare PD, Gou P et al (2008) Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Lett 8:3899–3903

    PubMed  CAS  Google Scholar 

  • Allen BL, Kotchey GP, Chen Y et al (2009) Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes. J Am Chem Soc 131:17194–17205

    PubMed  CAS  Google Scholar 

  • Andon FT, Kapralov AA, Yanamala N et al (2013) Carbon nanotubes: iodegradation of single-walled carbon nanotubes by eosinophil peroxidase. Small 9:2721–2729

    PubMed  CAS  PubMed Central  Google Scholar 

  • Asuri P, Bale SS, Pangule RC et al (2007) Structure, function, and stability of enzymes covalently attached to single-walled carbon nanotubes. Langmuir 23:12318–12321

    PubMed  CAS  Google Scholar 

  • Azevedo AM, Martins VC, Prazeres DM et al (2003) Horseradish peroxidase: a valuable tool in biotechnology. Biotechnol Annu Rev 9:199–247

    PubMed  CAS  Google Scholar 

  • Bao H, Pan Y, Li L (2012) Recent advances in graphene-based nanomaterials for biomedical applications. Nano Life 2:1230001

    Google Scholar 

  • Battistuzzi G, Bellei M, Bortolotti CA et al (2010) Redox properties of heme peroxidases. Arch Biochem Biophys 500:21–36

    PubMed  CAS  Google Scholar 

  • Bianco A, Kostarelos K, Prato M (2011) Making carbon nanotubes biocompatible and biodegradable. Chem Commun 47:10182–10188

    CAS  Google Scholar 

  • Bromberg N, Durán N (2001) Violacein transformation by peroxidase and oxidases: implications on its biological properties. J Mol Catal B Enzymatic 11:463–467

    CAS  Google Scholar 

  • Bussy C, Paineau E, Cambedouzou J et al (2013) Intracellular fate of carbon nanotubes inside murine macrophages: pH-dependent detachment of iron catalyst nanoparticles. Particle Fibre Toxicol 10:1–12

    Google Scholar 

  • Cai X, Ramalingam R, Wong HS et al (2013) Characterization of carbon nanotube protein corona by using quantitative proteomics. Nanomedicine 9:583–593

    PubMed  CAS  Google Scholar 

  • Cellot G, Ballerini L, Prato M et al (2010) Neurons are able to internalize soluble carbon nanotubes: new opportunities or old risks? Small 6:2630–2633

    PubMed  CAS  Google Scholar 

  • Chawla P, Chawla V, Maheshwari R et al (2010) Fullerenes: from carbon to medicine. Mini Rev Med Chem 10:662–677

    PubMed  CAS  Google Scholar 

  • Chen YR, Sarkanen S, Wang YY (2012) Lignin-degrading enzyme activities. Methods Mol Biol 908:251–268

    PubMed  CAS  Google Scholar 

  • Dong PX, Wan B, Wang ZX et al (2013) Exposure of single-walled carbon nanotubes impairs the functions of primarily cultured murine peritoneal macrophages. Nanotoxicology 7: 1028–1042

    PubMed  CAS  Google Scholar 

  • Dumortier H, Lacotte S, Pastorin G et al (2006) Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett 6:1522–1528

    PubMed  CAS  Google Scholar 

  • Durán N (2003) Application of oxidative enzymes in wastewater treatment. In: Sakurai A (ed) Wastewater treatment using enzymes, vol 2. Research Signpost, Trivandrum, pp 41–51

    Google Scholar 

  • Durán N, Baeza J, Freer J et al (1981) Dimethylsulfoxide as biological probe. Conformational effect on peroxidase system. Biochem Biophy Res Commun 103:131–138

    Google Scholar 

  • Durán N, Mansilla H, Leite LCC et al (1988) Peroxidase-hydrogen peroxide acting on lignin. J Inorg Biochem 34:105–115

    Google Scholar 

  • Durán N, Rosa MA, D’Annibale A et al (2002) Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microb Technol 31: 907–931

    Google Scholar 

  • Fadeel B, Shvedova AA, Kagan VE (2011) Interactions of carbono nanotubes with the immune system: focus on mechanisms of internalization and biodegradation. In: Alexiou C (ed) Nanomedicine—basic and clinical applications in diagnostics and therapy, vol 2. Erlangen, Else Kroner-Fresenius Symposia, pp 80–87

    Google Scholar 

  • Fisher C, Rider AE, Han ZJ et al (2012) Applications and nanotoxicity of carbon nanotubes and graphene in biomedicine. J Nanomat Article Number: 315185

    Google Scholar 

  • Fisher C, Rider AE, Han ZJ et al (2012b) Applications and nanotoxicity of carbon nanotubes and graphene in biomedicine. J Nanomater 315185:1–19

    Google Scholar 

  • Fornera S, Yazawa K, Walde P (2011) Spectrophotometric quantification of lactose in solution with a peroxidase-based enzymatic cascade reaction system. Anal Bioanal Chem 401:2307–2310

    PubMed  CAS  Google Scholar 

  • Fraczek A, Menaszek E, Paluszkiewicz C et al (2008) Comparative in vivo biocompatibility study of single and multi-wall carbon nanotubes. Acta Biomater 4:1593–1602

    PubMed  CAS  Google Scholar 

  • Gharbi N, Pressac M, Hadchouel M et al (2005) Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5:2578

    PubMed  CAS  Google Scholar 

  • Girish CM, Sasidharan A, Gowd GS et al (2013) Confocal Raman imaging study showing macrophage mediated biodegradation of graphene in vivo. Adv Healthc Mater Doi. doi:10.1002/adhm.20120048910.1002/adhm.201200489

  • Gitsov I, Lambrych K, Lu P et al (2005) Nondestructive regioselective modification of laccase by linear-dendritic copolymers: enhanced oxidation of benzo-apyrene in water. In: Cheng HN, Gross RA (eds) Polymer biocatalysis and biomaterials. American Chemical Society, Washington, DC, pp 80–94

    Google Scholar 

  • Gitsov I, Simonyan A, Krastanov A et al (2008a) Green oxidation of steroids in nano-reactors assembled from laccase and linear-dendritic copolymers. In: Cheng HN, Gross RA (eds) Polymer biocatalysis and biomaterials II. American Chemical Society, Washington, DC, pp 110–128

    Google Scholar 

  • Gitsov I, Hamzik J, Ryan J et al (2008b) Enzymatic nanoreactors for environmentally benign biotransformations. I. Formation and catalytic activity of supramolecular complexes of laccase and linear-dendritic block copolymers. Biomacromolecules 9:804–811

    PubMed  CAS  Google Scholar 

  • Gitsov I, Simonyan A, Wang L et al (2012) Polymer-assisted biocatalysis: unprecedented enzymatic oxidation of fullerene in aqueous medium. J Polym Sci A Polym Chem 50:119–126

    CAS  Google Scholar 

  • Hu W, Peng C, Lv M et al (2011) Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5:3693–3700

    PubMed  CAS  Google Scholar 

  • Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    CAS  Google Scholar 

  • Husain Q, Ulber R (2011) Immobilized peroxidase as a valuable tool in the remediation of aromatic pollutants and xenobiotic compounds: a review. Crit Rev Environ Sci Technol 41: 770–804

    CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    CAS  Google Scholar 

  • Jeon JR, Baldrian P, Murugesan K et al (2012) Laccase-catalyzed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications. Microb Biotechnol 5:318–332

    PubMed  PubMed Central  Google Scholar 

  • Jin H, Heller DA, Sharma R et al (2009) Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 3:149–158

    PubMed  CAS  Google Scholar 

  • Johari P, Shenoy VB (2011) Modulating optical properties of graphene oxide: role of prominent functional groups. ACS Nano 5:7640–7647

    PubMed  CAS  Google Scholar 

  • Johnston HJ, Hutchison GR, Christensen FM et al (2010) The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity. Toxicol Sci 114: 162–182

    PubMed  CAS  Google Scholar 

  • Kadokawa JI, Kobayashi S (2010) Polymer synthesis by enzymatic catalysis. Curr Opin Chem Biol 14:145–153

    PubMed  CAS  Google Scholar 

  • Kagan VE, Tyurina YY, Tyurin VA et al (2006) Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: Role of iron. Toxicol Lett 165:88–100

    PubMed  CAS  Google Scholar 

  • Kagan VE, Konduru NV, Feng W et al (2010) Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol 5:354–359

    PubMed  CAS  Google Scholar 

  • Konduru NV, Tyurina YY, Feng W et al (2009) Phosphatidylserine targets single-walled carbon nanotubes to professional phagocytes in vitro and in vivo. PLoS One 4:e4398

    PubMed  PubMed Central  Google Scholar 

  • Kosman J, Juskowiak B (2011) Peroxidase-mimicking DNAzymes for biosensing applications: a review. Anal Chim Acta 707:7–17

    PubMed  CAS  Google Scholar 

  • Kotchey GP, Allen BL, Vedala H et al (2011) The enzymatic oxidation of graphene oxide. ACS Nano 5:2098–2108

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kotchey GP, Gaugler JA, Kapralov AA (2013) Effect of antioxidants on enzyme-catalysed biodegradation of carbono nanotubes. J Mater Chem B Mater Biol Med 1:302–309

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kratschmer W, Lamb LD, Fostiropoulos K et al (1990) Solid C60: a new form of carbon. Nature 347:354–358

    Google Scholar 

  • Kroto HW, Heath JR, O´Brien SC et al (1985) C60-Buckminsterfullerene. Nature 318:162–163

    CAS  Google Scholar 

  • Kuila T, Bose S, Khanra P et al (2012) A green approach for the reduction of graphene oxide by wild carrot root. Carbon 50:914–921

    CAS  Google Scholar 

  • Lacerda L, Russier J, Pastorin G et al (2012) Translocation mechanisms of chemically functionalized carbono nanotubes across plasma membranes. Biomaterials 33:3334–3343

    PubMed  CAS  Google Scholar 

  • Lee SH, Sung JH, Park TH (2012) Nanomaterial-based biosensor as an emerging tool for biomedical applications. Ann Biomed Eng 40:1384–1397

    PubMed  Google Scholar 

  • Li X, Wang L, Fan Y et al (2012) Biocompatibility and toxicity of nanoparticles and nanotubes. J Nanomater 548389:1–19

    Google Scholar 

  • Liu X, Hurt RH, Kane AB (2010) Biodurability of single-walled carbono nanotubes depends on surface functionalization. Carbon 48:1961–1969

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liu J, Tang J, Gooding JJ (2012) Strategies for chemical modification of graphene and applications of chemically modified grapheme. J Mater Chem 22:12435–12452

    CAS  Google Scholar 

  • Lundqvist M, Stigler J, Elia G (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 105: 14265–14270

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lynch I, Salvati A, Dawson KA (2009) Protein-nanoparticle interactions: what does cell see? Nat Nanotechnol 4:546–547

    PubMed  CAS  Google Scholar 

  • Mao H, Chen W, Laurent S et al (2013) Hard corona composition and cellular toxicities of the graphene sheets. Coll Surf B: Biointerf 109:212–218

    CAS  Google Scholar 

  • Margot J, Bennati-Granier C, Julien Maillard J et al (2013) Bacterial versus fungal laccase: potential for micropollutant degradation. AMB Express 3:63

    PubMed  PubMed Central  Google Scholar 

  • Marques-Rocha FJ, Hernandez-Rodriguez VZ, Vazquez-Duhalt R (2000) Biodegradation of soil-adsorbed polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Biotechnol Lett 22:469–472

    Google Scholar 

  • Minussi RC, Miranda MA, Silva JA et al (2007) Purification, characterization and application of laccase from Trametes versicolor for color and phenolic removal of olive mill wastewater in the presence of 1-hydroxybenzotriazole. Afric J Biotechnol 6:1248–1254

    CAS  Google Scholar 

  • Mita N, Tawaki SI, Uyama H et al (2003) Laccase-catalyzed oxidative polymerization of phenols. Macromol Biosci 3:253–257

    CAS  Google Scholar 

  • Monopoli MP, Walczyk D, Campbell A et al (2011) Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133: 2525–2534

    PubMed  CAS  Google Scholar 

  • Monopoli MP, Aberg C, Salvati A et al (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–786

    PubMed  CAS  Google Scholar 

  • Nel AE, Madler L, Velegol D et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    PubMed  CAS  Google Scholar 

  • Neves V, Heister E, Costa S et al (2010) Uptake and release of double-walled carbon nanotubes by mammalian cells. Adv Funct Mater 20:3272–3279

    CAS  Google Scholar 

  • Nielsen GD, Roursgaard M, Jensen KA et al (2008) In vivo biology and toxicology of fullerenes and their derivatives. Basic Clin Pharmacol Toxicol 103:197–208

    PubMed  CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    PubMed  CAS  Google Scholar 

  • Nudejima S, Miyazawa K, Okuda-Shimazaki J et al (2009) Observation of phagocytosis of fullerene nanowhiskers by PMA-treated THP-1 cells. J Phys Conf Ser 159:012008

    Google Scholar 

  • Nudejima SI, Miyazawa K, Okuda-Shimazaki J et al (2010) Biodegradation of C(60) fullerene nanowhiskers by macrophage-like cells. In: Rossi M, Pham TD, Falugi C, Bussing A, Koukkou M (eds) Advances in biomedical research, proceedings, recent advances in biology and biomedicine. WSEAS Press, Cambridge, MA, pp 89–94

    Google Scholar 

  • Nunes A, Bussy C, Gherardini L et al (2012) In vivo degradation of functionalized carbon nanotubes after stereotactic administration in the brain cortex. Nanomedicine (Lond) 7: 1485–1494

    CAS  Google Scholar 

  • O’Brien PJ, Bechara EJH, O’Brien CR et al (1978) Generation of bio-electronic energy by electron transfer: reduction of peroxidase compounds I and compound II by eosin. Biochem Biophys Res Commun 81:75–81

    PubMed  Google Scholar 

  • Okuda-Shimazaki J, Nudejima S, Takaku S et al (2010) Effects of fullerene nanowhiskers on cytotoxicity and gene expression. Health 2:1456–1459

    Google Scholar 

  • Orts-Gil G, Natte K, Thiermann R et al (2013) On the role of surface composition and curvature on biointerface formation and colloidal stability of nanoparticles in a protein-rich model system. Colloids Surf B 108:110–119

    CAS  Google Scholar 

  • Paula AJ, Stefani D, Souza AG et al (2011) Surface chemistry in the process of coating mesoporous SiO(2) onto carbon nanotubes driven by the formation of Si-O-C bonds. Chem Eur J 17:3228–3237

    PubMed  CAS  Google Scholar 

  • Paula AJ, Araújo-Júnior RT, Martinez DST et al (2013) Influence of protein corona on the transport of molecules into cells by mesoporous silica nanoparticles. ACS Appl Mater Interfaces 5:8387–8393

    PubMed  CAS  Google Scholar 

  • Petersen EJ, Henry TB (2012) Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes: review. Environ Toxicol Chem 31:60–72

    PubMed  CAS  Google Scholar 

  • Porter AE, Muller K, Skepper J et al (2006) Uptake of C60 by human monocyte macrophages, its localization and implications for toxicity: studied by high resolution electron microscopy and electron tomography. Acta Biomater 2:409–419

    PubMed  Google Scholar 

  • Rahman M, Laurent S, Tawil N et al (2013) Protein-nanoparticle interactions. In: Martinac B (ed) Springer series in biophysics, vol 15. Springer, Berlin, p 84

    Google Scholar 

  • Rajavel K, Minitha CR, Ranjith KS et al (2012) Recent progress on the synthesis and applications of carbon based nanostructures. Recent Patents Nanotechnol 6:99–104

    CAS  Google Scholar 

  • Roebben G, Ramirez-Garcia S, Hackley VA et al (2011) Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment. J Nanopart Res 13:2675–2687

    Google Scholar 

  • Rolfe P (2012) Micro- and nanosensors for medical and biological measurement. Sens Mater 24:275–302

    CAS  Google Scholar 

  • Rourke JP, Pandey PA, Moore JJ et al (2011) The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew Chem Int Ed 50:3173–3177

    CAS  Google Scholar 

  • Russier J, Menard-Moyon C, Venturelli E et al (2011) Oxidative biodegradation of single- and multi-walled carbon nanotubes. Nanoscale 3:893–896

    PubMed  CAS  Google Scholar 

  • Ryan BJ, Carolan N, O´Fagain C (2006) Horseradish and soybean peroxidases: comparable tools for alternative niches? Trends Biotechnol 24:355–363

    PubMed  CAS  Google Scholar 

  • Salas EC, Sun Z, Luttge A et al (2010) Reduction of graphene oxide via bacterial respiration. ACS Nano 4:4852–4856

    PubMed  CAS  Google Scholar 

  • Sanchez VC, Jachak A, Hurt RH et al (2012) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25:15–34

    PubMed  CAS  PubMed Central  Google Scholar 

  • Saptarshi SR, Duschl A, Lopata AL (2013) Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol 11:26

    CAS  Google Scholar 

  • Schreiner KM, Filley TR, Blanchette RA et al (2009) White-rot basidiomycete-mediated decomposition of C60 fullerol. Environ Sci Technol 43:3162–3168

    PubMed  CAS  PubMed Central  Google Scholar 

  • Seabra AB, Paula AJ, Durán N (2013) Redox-enzymes, cells and micro-organisms acting on carbon nanostructures transformation: a mini-review. Biotechnol Prog 29:1–10

    PubMed  CAS  Google Scholar 

  • Shan C, Yang H, Song J et al (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378–2382

    PubMed  CAS  Google Scholar 

  • Shannahan JH, Brown JM, Chen R et al (2013) Comparison of nanotube-protein corona composition in cell culture media. Small 12:2171–2181

    Google Scholar 

  • Shen H, Zhang L, Liu M et al (2012) Biomedical applications of graphene. Theranostics 2: 283–294

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shvedova AA, Kapralov AA, Feng WH et al (2012) Impaired clearance and enhanced pulmonary inflammatory/fibrotic response to carbon nanotubes in myeloperoxidase-deficient mice. PLOS One 7:e30923

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stefani D, Paula AJ, Vaz BG et al (2011) Structural and proactive safety aspects of oxidation debris from multiwalled carbon nanotubes. J Hazard Mater 189:391–396

    PubMed  CAS  Google Scholar 

  • Stern ST, Adiseshaiah PP, Crist RM (2012) Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Particle Fiber Toxicol 9:20

    CAS  Google Scholar 

  • Takagi A, Hirose A, Nishimura T et al (2008) Induction of mesothelioma in p53(+/−) mouse by intraperitoneal application of multi-wall carbono nanotube. J Toxicol Sci 33:105–116

    PubMed  CAS  Google Scholar 

  • Umbuzeiro GA, Coluci VR, Honorio JG et al (2011) Understanding the interaction of multi-walled carbon nanotubes with mutagenic organic pollutants using computational modeling and biological experiments. Trends Anal Chem 30:437–446

    CAS  Google Scholar 

  • Uyama H, Mariuchi N, Tonami H et al (2002) Peroxidase catalyzed oxidative polymerization of bisphenols. Biomacromolecules 3:187–193

    PubMed  CAS  Google Scholar 

  • van Rantwijk F, Sheldon RA (2000) Selective oxygen transfer catalyzed by heme peroxidases: synthetic and mechanistic aspects. Curr Opin Biotechnol 11:554–564

    PubMed  Google Scholar 

  • Vlasova II, Vakhrusheva TV, Sokolov AV et al (2011a) Peroxidase-induced degradation of single-walled carbon nanotubes: hypochlorite is a major oxidant capable of in vivo degradation of carbon nanotubes. J Phys Conf Ser 291:012056

    Google Scholar 

  • Vlasova II, Sokolov AV, Chekanov AV et al (2011b) Myeloperoxidase-induced biodegradation of singlewalled carbon nanotubes is mediated by hypochlorite. Russian J Bioorg Chem 37:453–463

    CAS  Google Scholar 

  • Vlasova II, Vakhrusheva TV, Sokolov AV et al (2012) PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes. Toxicol Appl Pharmacol 264:131–142

    PubMed  CAS  Google Scholar 

  • Walczyk D, Bombelli FB, Monopoli MP et al (2008) What the cell "Sees" in bionanoscience. J Am Chem Soc 132:5761–5768

    Google Scholar 

  • Walkey CD, Chan WCW (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799

    PubMed  CAS  Google Scholar 

  • Witayakran S, Ragauskas AJ (2009) Synthetic applications of laccase in green chemistry. Adv Synth Catal 351:1187–1209

    CAS  Google Scholar 

  • Xu P, Uyama H, Whitten JE, Kobayashi S, Kaplan DL et al (2005) Peroxidase-catalyzed in situ polymerization of surface orientated caffeic acid. J Am Chem Soc 127:11745–11753

    PubMed  CAS  Google Scholar 

  • Yamashita T, Yamashita K, Nabeshi H et al (2012) Carbon nanomaterials: efficacy and safety for nanomedicine. Materials 5:350–363

    CAS  Google Scholar 

  • Yang ST, Luo J, Zhou Q et al (2012) Pharmacokinetics, metabolism and toxicity of carbon nanotubes for bio-medical purposes. Theranostics 2:271–282

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yue FN, Luo SM, Zhang CD (2013) Degradation and transformation of engineering carbon nanomaterials in the environment: a review. Chinese J Appl Ecol 24:589–596

    CAS  Google Scholar 

  • Zakharova GS, Uporov IV, Tishkov VI (2011) Horseradish peroxidase: modulation of properties by chemical modification of protein and heme. Biochemistry (Moscow) 76:1391–1401

    CAS  Google Scholar 

  • Zhao Y, Allen BL, Star A (2011a) Enzymatic degradation of multiwalled carbon nanotubes. J Phys Chem A 115:9536–9544

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao F, Zhao Y, Liu Y et al (2011b) Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7:1322–1337

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Support from FAPESP, CNPq, INOMAT (MCT/CNPq), NanoBioss (MCTI), and the Brazilian Network in Nanotoxicology (MCT/CNPq) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Durán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Durán, N., Paula, A.J., Martinez, D.S.T., Seabra, A.B. (2014). Bioremediation and Biotransformation of Carbon Nanostructures Through Enzymatic and Microbial Systems. In: Alvarez, A., Polti, M. (eds) Bioremediation in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-319-05738-5_6

Download citation

Publish with us

Policies and ethics