Skip to main content

Co-contaminated Soils Bioremediation by Actinobacteria

  • Chapter
  • First Online:
Bioremediation in Latin America

Abstract

More than one-third of contaminated areas are found to have more than one type of pollutant. Co-contaminated environments with metals and organic compounds are difficult to remediate because of the mixed nature of the pollulants. Actinobacteria is an important group of microorganisms found in soils, with high metabolic versatility and abilities to bioremediation. Actinobacteria are currently studied for bioremediation of soils contaminated by pesticides and heavy metals. In this chapter we review the potential of actinobacteria isolated from contaminated environments for simultaneous soil bioremediation of Cr(VI) and the organochlorine pesticide lindane. Four actinobacteria, tolerant to Cr(VI) and lindane mixture were used: Streptomyces spp. A5, M7, MC1 and Amycolatopsis tucumanensis DSM 45259. Sterilized soil samples were inoculated with actinobacteria strains, either individually or as a consortium (formed by all selected actinobacteria) then contaminated with Cr(VI) and lindane, and incubated at 30 °C for 14 days. All actinobacteria were able to grow and remove both contaminants, the consortium formed by Streptomyces spp. A5, M7, MC1 and A. tucumanensis showed the highest Cr(VI) removal, while Streptomyces sp. M7 produced the maximum lindane removal. In non-sterile soil samples, Streptomyces sp. M7 and the consortium removed more than 40 % of the lindane, while Streptomyces sp. M7 demonstrated the greatest Cr(VI) removal. According to these results, it could be concluded that the use of Streptomyces sp. M7 is the strategy more appropriate for the bioremediation of soils contaminated with Cr(VI) and lindane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albarracín VH, Amoroso MJ, Abate CM (2005) Isolation and characterization of indigenous copper-resistant actinomycete strains. Chem Erde Geochem 65:145–156

    Article  Google Scholar 

  • Albarracín VH, Ávila AL, Amoroso MJ et al (2008a) Copper removal ability by Streptomyces strains with dissimilar growth patterns and endowed with cupric reductase activity. FEMS Microbiol Lett 288:141–148

    Article  PubMed  Google Scholar 

  • Albarracín VH, Winik B, Kothe E et al (2008b) Copper bioaccumulation by the actinobacterium Amycolatopsis sp. AB0. J Basic Microbiol 48:323–330

    Article  PubMed  Google Scholar 

  • Albarracín VH, Alonso-Vega P, Trujillo ME et al (2010a) Amycolatopsis tucumanensis sp. nov., a copper-resistant actinobacterium isolated from polluted sediments. Int J Syst Evol Microbiol 60:397–401

    Article  PubMed  Google Scholar 

  • Albarracín VH, Amoroso MJ, Abate CM (2010b) Bioaugmentation of copper polluted soil microcosms with Amycolatopsis tucumanensis to diminish phytoavailable copper for Zea mays plants. Chemosphere 79:131–137

    Article  PubMed  Google Scholar 

  • Alisi C, Musella R, Tasso F et al (2009) Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. Sci Total Environ 407:3024–3032

    Article  PubMed  CAS  Google Scholar 

  • Amoroso MJ, Castro GR, Durán A et al (2001) Chromium accumulation by two Streptomyces spp. isolated from riverine sediments. J Ind Microbiol Biotechnol 26:210–215

    Article  PubMed  CAS  Google Scholar 

  • Amoroso MJ, Oliver G, Castro GR (2002) Estimation of growth inhibition by copper and cadmium in heavy metal tolerant actinomycetes. J Basic Microbiol 42:231

    Article  PubMed  CAS  Google Scholar 

  • APHA (1989) Standard methods for the examination of water and wastewater, 17th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Atlas R, Unterman R (1999) Bioremediation. In: Demain AC, Davis JE (eds) Industrial microbiology and biotechnology. ASM Press, Washington, DC

    Google Scholar 

  • Bagchi D, Stohs SJ, Downs BW et al (2002) Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology 180:5–22

    Article  PubMed  CAS  Google Scholar 

  • Benimeli CS, Amoroso MJ, Chaile AP et al (2003) Isolation of four aquatic streptomycetes strains capable of growth on organochlorine pesticides. Bioresour Technol 89:133–138

    Article  PubMed  CAS  Google Scholar 

  • Benimeli CS, Castro GR, Chaile AP et al (2006) Lindane removal induction by Streptomyces sp. M7. J Basic Microbiol 46:348–357

    Article  PubMed  CAS  Google Scholar 

  • Benimeli CS, Castro GR, Chaile AP et al (2007) Lindane uptake and degradation by aquatic Streptomyces sp. strain M7. Int Biodeter Biodegr 59:148–155

    Article  CAS  Google Scholar 

  • Benimeli CS, Fuentes MS, Abate CM, Amoroso MJ (2008) Bioremediation of lindane-contaminated soil by Streptomyces sp. strain M7 and its effects on Zea mays growth. Int Biodeterior Biodegrad 61:233–239

    Article  CAS  Google Scholar 

  • Bhadra A, Mahananda M (2013) Bioaccumulation of hexavalent chromium in rice (Oryza sativa L.) grown in paddy field soil of Basundhara coal mine area, Sundargarh, Odisha, India. Development 25:27

    Article  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Article  CAS  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    Article  PubMed  CAS  Google Scholar 

  • Csillag J, Partay G, Lukacs A et al (1999) Extraction of soil solution for environmental analysis. Int J Environ Anal Chem 74:305–324

    Article  CAS  Google Scholar 

  • Cuozzo S, Rollán G, Abate C et al (2009) Specific dechlorinase activity in lindane degradation by Streptomyces sp. M7. World J Microbiol Biotechnol 25:1539–1546

    Article  CAS  Google Scholar 

  • Dana Devi K, Rozati R, Saleha Banu B et al (2001) In vivo genotoxic effect of potassium dichromate in mice leukocytes using comet assay. Food Chem Toxicol 39:859–865

    Article  PubMed  CAS  Google Scholar 

  • Dejonghe W, Berteloot E, Goris J et al (2003) Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading variovorax strain. Appl Environ Microbiol 69:1532–1541

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Egli M, Mirabella A, Kägi B et al (2006) Influence of steam sterilisation on soil chemical characteristics, trace metals and clay mineralogy. Geoderma 131:123–142

    Article  CAS  Google Scholar 

  • El Deeb B, Altalhi AD (2009) Degradative plasmid and heavy metal resistance plasmid naturally coexist in phenol and cyanide assimilating bacteria. Am J Biochem Biotechnol 5:84–93

    Article  Google Scholar 

  • Ensign J (1990) Introduction to the Actinomycetes. In: Balows A, Trüper H, Dworkin M, Harder W, Schleifer K (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. Springer, New York, pp 811–815

    Google Scholar 

  • Fuentes MS, Benimeli CS, Cuozzo SA et al (2010) Isolation of pesticide-degrading actinomycetes from a contaminated site: Bacterial growth, removal and dechlorination of organochlorine pesticides. Int Biodeter Biodegr 64:434–441

    Article  CAS  Google Scholar 

  • Fuentes M, Sáez J, Benimeli C et al (2011) Lindane biodegradation by defined consortia of indigenous Streptomyces strains. Water Air Soil Pollut 222:217–231

    Article  CAS  Google Scholar 

  • Fuentes MS, Briceño G, Saez JM et al (2013) Enhanced removal of a pesticides mixture by single cultures and consortia of free and immobilized Streptomyces strains. Biomed Res Int 2013:9

    Article  Google Scholar 

  • Genilloud O, González I, Salazar O et al (2011) Current approaches to exploit actinomycetes as a source of novel natural products. J Ind Microbiol Biotechnol 38:375–389

    Article  PubMed  CAS  Google Scholar 

  • Goodfellow M, Williams S, Mordarski M (1988) Actinomycetes in biotechnology. Academic Press, San Diego

    Google Scholar 

  • Harris ESJ, Cao S, Littlefield BA et al (2011) Heavy metal and pesticide content in commonly prescribed individual raw Chinese herbal medicines. Sci Total Environ 409:4297–4305

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Johri AK, Dua M, Saxena DM et al (2000) Enhanced degradation of hexachlorocyclohexane isomers by Sphingomonas paucimobilis. Curr Microbiol 41:309–311

    Article  PubMed  CAS  Google Scholar 

  • Kieser T, Bibb M, Buttner M et al (2000) Practical Streptomyces genetics. The John Innes Foundation, Colney

    Google Scholar 

  • Kotas J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    Article  PubMed  CAS  Google Scholar 

  • Ma JW, Wang FY, Huang ZH et al (2010) Simultaneous removal of 2,4-dichlorophenol and Cd from soils by electrokinetic remediation combined with activated bamboo charcoal. J Hazard Mater 176:715–720

    Article  PubMed  CAS  Google Scholar 

  • Mandiwana KL, Panichev N, Kataeva M et al (2007) The solubility of Cr(III) and Cr(VI) compounds in soil and their availability to plants. J Hazard Mater 147:540–545

    Article  PubMed  CAS  Google Scholar 

  • Mansour S (2012) Evaluation of Residual Pesticides and Heavy Metals Levels in Conventionally and Organically Farmed Potato Tubers in Egypt. In: He Z, Larkin R, Honeycutt W (eds) Sustainable potato production: global case studies. Springer, Netherlands, pp 493–506

    Chapter  Google Scholar 

  • Moreira I, Amorim C, Carvalho M et al (2013) Effect of the metals iron, copper and silver on fluorobenzene biodegradation by Labrys portucalensis. Biodegradation 24:245–255

    Article  PubMed  CAS  Google Scholar 

  • Nie M, Xian N, Fu X et al (2010) The interactive effects of petroleum-hydrocarbon spillage and plant rhizosphere on concentrations and distribution of heavy metals in sediments in the Yellow River Delta, China. J Hazard Mater 174:156–161

    Article  PubMed  CAS  Google Scholar 

  • Olaniran AO, Balgobind A, Pillay B (2009) Impacts of heavy metals on 1,2-dichloroethane biodegradation in co-contaminated soil. J Environ Sci (China) 21:661–666

    Article  CAS  Google Scholar 

  • Orton TG, Saby NPA, Arrouays D et al (2013) Spatial distribution of lindane concentration in topsoil across France. Sci Total Environ 443:338–350

    Article  PubMed  CAS  Google Scholar 

  • Phillips TM, Seech AG, Lee H et al (2005) Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation 16:363–392

    Article  PubMed  CAS  Google Scholar 

  • Polti MA, Amoroso MJ, Abate CM (2007) Chromium(VI) resistance and removal by actinomycete strains isolated from sediments. Chemosphere 67:660–667

    Article  PubMed  CAS  Google Scholar 

  • Polti MA, García RO, Amoroso MJ et al (2009) Bioremediation of chromium(VI) contaminated soil by Streptomyces sp. MC1. J Basic Microbiol 49:285–292

    Article  PubMed  CAS  Google Scholar 

  • Polti MA, Amoroso MJ, Abate CM (2010) Chromate reductase activity in Streptomyces sp. MC1. J Gen Appl Microbiol 56:11–18

    Article  PubMed  CAS  Google Scholar 

  • Polti MA, Atjian MC, Amoroso MJ et al (2011) Soil chromium bioremediation: synergic activity of actinobacteria and plants. Int Biodeter Biodegr 65:1175–1181

    Article  CAS  Google Scholar 

  • Rathnayake IVN, Megharaj M, Krishnamurti GSR et al (2013) Heavy metal toxicity to bacteria – are the existing growth media accurate enough to determine heavy metal toxicity? Chemosphere 90:1195–1200

    Article  PubMed  CAS  Google Scholar 

  • Roane TM, Josephson KL, Pepper IL (2001) Dual-bioaugmentation Strategy To Enhance Remediation of Cocontaminated Soil. Appl Environ Microbiol 67:3208–3215

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saez JM, Benimeli CS, Amoroso MJ (2012) Lindane removal by pure and mixed cultures of immobilized actinobacteria. Chemosphere 89:982–987

    Article  PubMed  CAS  Google Scholar 

  • Sandrin TR, Hoffman DR (2007) Bioremediation of Organic and Metal Co-contaminated Environments: Effects of Metal Toxicity, Speciation, and Bioavailability on Biodegradation. In: Singh S, Tripathi R (eds) Environmental bioremediation technologies. Springer, Berlin Heidelberg, pp 1–34

    Chapter  Google Scholar 

  • Sandrin TR, Maier RM (2003) Impact of metals on the biodegradation of organic pollutants, vol 111. ETATS-UNIS, US Department of Health and Human Services, Research Triangle Park, NC

    Google Scholar 

  • Shi Y, Lu Y, Meng F et al (2013) Occurrence of organic chlorinated pesticides and their ecological effects on soil protozoa in the agricultural soils of North Western Beijing, China. Ecotoxicol Environ Saf 92:123–128

    Article  PubMed  CAS  Google Scholar 

  • Shong J, Jimenez Diaz MR, Collins CH (2012) Towards synthetic microbial consortia for bioprocessing. Curr Opin Biotechnol 23:798–802

    Article  PubMed  CAS  Google Scholar 

  • Siñeriz ML, Kothe E, Abate CM (2009) Cadmium biosorption by Streptomyces sp. F4 isolated from former uranium mine. J Basic Microbiol 49:S55–S62

    Article  PubMed  Google Scholar 

  • Smith D, Alvey S, Crowley DE (2005) Cooperative catabolic pathways within an atrazine-degrading enrichment culture isolated from soil. FEMS Microbiol Ecol 53:265–275

    Article  PubMed  CAS  Google Scholar 

  • Sprocati AR, Alisi C, Tasso F, Marconi P, Sciullo A, Pinto V, Chiavarini S, Ubaldi C, Cremisini C (2012) Effectiveness of a microbial formula, as a bioaugmentation agent, tailored for bioremediation of diesel oil and heavy metal co-contaminated soil. Process Biochem 47:1649–1655

    Article  CAS  Google Scholar 

  • Srinivasa Gowd S, Ramakrishna Reddy M, Govil PK (2010) Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. J Hazard Mater 174:113–121

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Ahmad AH, Thakur IS (2007) Removal of chromium and pentachlorophenol from tannery effluents. Bioresour Technol 98:1128–1132

    Article  PubMed  CAS  Google Scholar 

  • Stewart M, Jardine P, Brandt C et al (2003) Effects of contaminant concentration, aging, and soil properties on the bioaccessibility of Cr (III) and Cr (VI) in soil. Soil Sediment Contam 12:1–21

    Article  CAS  Google Scholar 

  • Tang X, Shen C, Shi D et al (2010) Heavy metal and persistent organic compound contamination in soil from Wenling: An emerging e-waste recycling city in Taizhou area, China. J Hazard Mater 173:653–660

    Article  PubMed  CAS  Google Scholar 

  • Thavamani P, Megharaj M, Naidu R (2012) Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium. Biodegradation 23:823–835

    Article  PubMed  CAS  Google Scholar 

  • USEPA (1998) Toxicological review for hexavalent chromium. USEPA

    Google Scholar 

  • Vobis G (1997) Morphology of actinomycetes. In: Miyadoh S (ed) Atlas of actinomycetes. Asakura Publishing Co., Japón, pp 180–191

    Google Scholar 

  • Volke Sepúlveda T, Velasco Trejo JA (2002) Tecnologías de remediación para suelos contaminados. INE-SEMARNAT, Mexico

    Google Scholar 

  • Wasi S, Tabrez S, Ahmad M (2011) Suitability of immobilized pseudomonas fluorescens SM1 strain for remediation of phenols, heavy metals, and pesticides from water. Water Air Soil Pollut 220:89–99

    Article  CAS  Google Scholar 

  • Yang S-C, Lei M, Chen T-B et al (2010) Application of zerovalent iron (Fe0) to enhance degradation of HCHs and DDX in soil from a former organochlorine pesticides manufacturing plant. Chemosphere 79:727–732

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan D. Aparicio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aparicio, J.D., Simón Solá, M.Z., Atjián, M.C., Benimeli, C.S., Amoroso, M.J. (2014). Co-contaminated Soils Bioremediation by Actinobacteria. In: Alvarez, A., Polti, M. (eds) Bioremediation in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-319-05738-5_11

Download citation

Publish with us

Policies and ethics