Skip to main content

Computational Aspects: How Landmarks Can Be Observed, Stored, and Analysed

  • Chapter
  • First Online:
Landmarks

Abstract

In this chapter, we will explore how to ‘compute’ a landmark. We will look at ways to calculate that some geographic object sticks out from its background. We will also discuss approaches for selecting the most appropriate landmark for describing specific spatial situations. Both these aspects are important steps for the integration of landmarks in computational services. Therefore, in a third part of this chapter we will discuss commonalities and differences between both aspects, where and why the presented approaches may fail, and what alternatives there are for overcoming these shortcomings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.flickr.com, last visited 8/1/2014

  2. 2.

    https://picasaweb.google.com, last visited 8/1/2014

  3. 3.

    http://www.panoramio.com, last visited 8/1/2014

  4. 4.

    http://www.whereis.com.au, last visited 8/1/2014

References

  1. Aurenhammer, F.: Voronoi diagrams: A survey of a fundamental geometric data structure. ACM Comput. Surveys 23(3), 345–405 (1991)

    Article  Google Scholar 

  2. Bell, M., Reeves, S., Brown, B., Sherwood, S., MacMillan, D., Ferguson, J., Chalmers, M.: Eyespy: Supporting navigation through play. In: Proceedings of the 27th International Conference on Human Factors in Computing Systems, CHI, pp. 123–132. ACM, New York (2009)

    Google Scholar 

  3. Buchsbaum, G.: A spatial processor model for object colour perception. J. Franklin Inst. 310(1), 1–26 (1980)

    Article  MathSciNet  Google Scholar 

  4. Caduff, D., Timpf, S.: The landmark spider: Representing landmark knowledge for wayfinding tasks. In:  Barkowsky, T.,  Freksa, C.,  Hegarty, M.,  Lowe, R. (eds.) Reasoning with Mental and External Diagrams: Computational Modeling and Spatial Assistance-Papers from the 2005 AAAI Spring Symposium, pp. 30–35. Menlo Park, CA (2005)

    Google Scholar 

  5. Crandall, D., Backstrom, L., Huttenlocher, D.P., Kleinberg, J.: Mapping the world’s photos. In:  Maarek, Y.,  Nejdl, W. (eds.) International World Wide Web Conference, pp. 761–770. ACM Press, Madrid, Spain (2009)

    Google Scholar 

  6. Dale, R., Geldof, S., Prost, J.P.: Using natural language generation in automatic route description. J. Res. Pract. Inform. Tech. 37(1), 89–105 (2005)

    Google Scholar 

  7. Drymonas, E., Pfoser, D.: Geospatial route extraction from texts. In: Proceedings of the 1st ACM SIGSPATIAL International Workshop on Data Mining for Geoinformatics, pp. 29–37. ACM, New York (2010)

    Google Scholar 

  8. Duckham, M., Kulik, L.: “Simplest” paths: Automated route selection for navigation. In:  Kuhn, W.,  Worboys, M.,  Timpf, S. (eds.) Spatial information theory. Lecture Notes in Computer Science, vol. 2825, pp. 169–185. Springer, Berlin (2003)

    Google Scholar 

  9. Duckham, M., Winter, S., Robinson, M.: Including landmarks in routing instructions. J. Location-Based Services 4(1), 28–52 (2010)

    Article  Google Scholar 

  10. Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley, New York (1973)

    MATH  Google Scholar 

  11. Elias, B.: Extracting landmarks with data mining methods. In:  Kuhn, W.,  Worboys, M.,  Timpf, S. (eds.) Spatial information theory. Lecture Notes in Computer Science, vol. 2825, pp. 375–389. Springer, Berlin (2003)

    Google Scholar 

  12. Elias, B., Paelke, V., Kuhnt, S.: Concepts for the cartographic visualization of landmarks. In:  Gartner, G. (ed.) Location Based Services & Telecartography-Proceedings of the Symposium 2005, Geowissenschaftliche Mitteilungen, pp. 1149–155. TU Vienna (2005)

    Google Scholar 

  13. Fisher, D.H.: Knowledge acquisition via incremental conceptual clustering. Mach. Learn. 2(2), 139–172 (1987)

    Google Scholar 

  14. Ghasemi, M., Richter, K.F., Winter, S.: Landmarks in OSM. In: 5th Annual International OpenStreetMap Conference. Denver, CO (2011)

    Google Scholar 

  15. Goodchild, M.: Citizens as sensors: The world of volunteered geography. GeoJournal 69(4), 211–221 (2007)

    Article  Google Scholar 

  16. Götze, J., Boye, J.: Deriving salience models from human route directions. In: Proceedings of CoSLI-3 Workshop on Computational Models of Spatial Language Interpretation and Generation. Potsdam, Germany (2013)

    Google Scholar 

  17. Hansen, S., Richter, K.F., Klippel, A.: Landmarks in OpenLS - a data structure for cognitive ergonomic route directions. In:  Raubal, M.,  Miller, H., Frank, A.U., Goodchild, M.F. (eds.) Geographic information science. Lecture Notes in Computer Science, vol. 4197, pp. 128–144. Springer, Berlin (2006)

    Google Scholar 

  18. Hollenstein, L., Purves, R.S.: Exploring place through user-generated content: Using Flickr to describe city cores. J. Spatial Inform. Sci. 1(1), 21–48 (2010)

    Google Scholar 

  19. Holone, H., Misund, G., Holmstedt, H.: Users are doing it for themselves: Pedestrian navigation with user generated content. In: Proceedings of the 2007 International Conference on Next Generation Mobile Applications, Services and Technologies, IEEE Computer Society, pp. 91–99. Washington (2007)

    Google Scholar 

  20. Jones, C.B., Purves, R.S.: Geographical information retrieval. Int. J. Geogr. Inform. Sci. 22(3), 219–228 (2008)

    Article  Google Scholar 

  21. Karimi, H.A., Benner, J.G., Anwar, M.: A model for navigation experience sharing through social navigation networks (SoNavNets). In: International Workshop on Issues and Challenges in Social Computing (WICSOC2011). Las Vegas, NV (2011)

    Google Scholar 

  22. Karimi, H.A., Zimmerman, B., Ozcelik, A., Roongpiboonsopit, D.: SoNavNet: A framework for social navigation networks. In: Procceedings of the International Workshop on Location Based Social Networks (LBSN’09). ACM Press, New York (2009)

    Google Scholar 

  23. Kennedy, L.S., Naaman, M.: Generating diverse and representative image search results for landmarks. In: Proceedings of the 17th International Conference on World Wide Web, WWW, pp. 297–306. ACM, New York(2008)

    Google Scholar 

  24. Klippel, A.: Wayfinding choremes. In: Kuhn, W., Worboys, M., Timpf, S. (eds.) Spatial Information T heory. Lecture Notes in Computer Science, vol. 2825, pp. 320–334. Springer, Berlin (2003)

    Google Scholar 

  25. Klippel, A., Tappe, H., Habel, C.: Pictorial representations of routes: Chunking route segments during comprehension. In:  Freksa, C.,  Brauer, W.,  Habel, C., Wender, K.F. (eds.) Spatial Cognition III. Lecture Notes in Artificial Intelligence, vol. 2685, pp. 11–33. Springer, Berlin (2003)

    Google Scholar 

  26. Klippel, A., Winter, S.: Structural salience of landmarks for route directions. In: A.G. Cohn, D.M. Mark (eds.) Spatial Information Theory. Lecture Notes in Computer Science, vol. 3693, pp. 347–362. Springer, Berlin (2005)

    Chapter  Google Scholar 

  27. Krumm, J., Davies, N., Narayanaswami, C.: User-generated content. Pervasive Comput. 7(4), 10–11 (2008)

    Article  Google Scholar 

  28. Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  29. Lynch, K.: The Image of the City. The MIT Press, Cambridge, MA (1960)

    Google Scholar 

  30. Mummidi, L., Krumm, J.: Discovering points of interest from users’ map annotations. GeoJournal 72(3), 215–227 (2008)

    Article  Google Scholar 

  31. Nothegger, C., Winter, S., Raubal, M.: Selection of salient features for route directions. Spatial Cognit. Comput. 4(2), 113–136 (2004)

    Article  Google Scholar 

  32. Presson, C.C., Montello, D.R.: Points of reference in spatial cognition: Stalking the elusive landmark. Br. J. Dev. Psychol. 6, 378–381 (1988)

    Article  Google Scholar 

  33. Quinlan, J.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  34. Rattenbury, T., Naaman, M.: Methods for extracting place semantics from Flickr tags. ACM Trans. Web 3(1), 1:1–1:30 (2009)

    Google Scholar 

  35. Raubal, M., Winter, S.: Enriching wayfinding instructions with local landmarks. In: Egenhofer, M.J., Mark, D.M. (eds.) Geographic Information Science. Lecture Notes in Computer Science, vol. 2478, pp. 243–259. Springer, Berlin (2002)

    Chapter  Google Scholar 

  36. Richter, K.F.: A uniform handling of different landmark types in route directions. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) Spatial Information Theory. Lecture Notes in Computer Science, vol. 4736, pp. 373–389. Springer, Berlin (2007)

    Chapter  Google Scholar 

  37. Richter, K.F.: Context-Specific Route Directions - Generation of Cognitively Motivated Wayfinding Instructions, vol. DisKi 314 / SFB/TR 8 Monographs Volume 3. IOS Press, Amsterdam, The Netherlands (2008)

    Google Scholar 

  38. Richter, K.F.: Prospects and challenges of landmarks in navigation services. In:  Raubal, M., Mark, D.M. (eds.) Cognitive and Linguistic Aspects of Geographic Space–New Perspectives on Geographic Information Research, Lecture Notes in Geoinformation and Cartography, pp. 83–97. Springer, Berlin (2013)

    Google Scholar 

  39. Richter, K.F., Duckham, M.: Simplest instructions: Finding easy-to-describe routes for navigation. In: Cova, T.J., Miller, H.J.,  Beard, K., Frank, A.U., Goodchild, M.F. (eds.) Geographic Information Science. Lecture Notes in Computer Science, vol. 5266, pp. 274–289. Springer, Berlin (2008)

    Chapter  Google Scholar 

  40. Richter, K.F., Klippel, A.: Before or after: Prepositions in spatially constrained systems. In:  Barkowsky, T.,  Knauff, M.,  Ligozat, G., Montello, D.R. (eds.) Spatial Cognition V. Lecture Notes in Artificial Intelligence, vol. 4387, pp. 453–469. Springer, Berlin (2007)

    Google Scholar 

  41. Richter, K.F., Winter, S.: Citizens as database: Conscious ubiquity in data collection. In:  Pfoser, D.,  Tao, Y.,  Mouratidis, K.,  Nascimento, M.,  Mokbel, M.,  Shekhar, S.,  Huang, Y. (eds.) Advances in Spatial and Temporal Databases. Lecture Notes in Computer Science, vol. 6849, pp. 445–448. Springer, Berlin (2011)

    Chapter  Google Scholar 

  42. Richter, K.F., Winter, S.: Harvesting user-generated content for semantic spatial information: The case of landmarks in OpenStreetMap. In:  Hock, B. (ed.) Proceedings of the Surveying and Spatial Sciences Biennial Conference 2011, pp. 75–86. Surveying and Spatial Sciences Institute, Wellington, NZ (2011)

    Google Scholar 

  43. Sadeghian, P., Kantardzic, M.: The new generation of automatic landmark detection systems: Challenges and guidelines. Spatial Cognit. Computat. 8(3), 252–287 (2008)

    Article  Google Scholar 

  44. Schlieder, C.: Reasoning about ordering. In: Frank, A.U.,  Kuhn, W. (eds.) Spatial Information Theory. Lecture Notes in Computer Science, vol. 988, pp. 341–349. Springer, Berlin (1995)

    Google Scholar 

  45. Sorrows, M.E., Hirtle, S.C.: The nature of landmarks for real and electronic spaces. In:  Freksa, C., Mark, D.M. (eds.) Spatial Information Theory. Lecture Notes in Computer Science, vol. 1661, pp. 37–50. Springer, Berlin (1999)

    Google Scholar 

  46. Surowiecki, J.: The Wisdom of Crowds. Doubleday, New York (2004)

    Google Scholar 

  47. Tezuka, T., Tanaka, K.: Landmark extraction: A web mining approach. In: Cohn, A.G., Mark, D.M. (eds.) Spatial Information Theory. Lecture Notes in Computer Science, vol. 3693, pp. 379–396 (2005)

    Article  Google Scholar 

  48. Tomko, M., Winter, S.: Describing the functional spatial structure of urban environments. Comput. Environ. Urban Syst. 41, 177–187 (2013)

    Article  Google Scholar 

  49. Waller, D., Loomis, J.M., Golledge, R.G., Beall, A.C.: Place learning in humans: The role of distance and direction information. Spatial Cognit. Computat. 2(4), 333–354 (2000)

    Article  Google Scholar 

  50. Williams, S.: Generating pitch accents in a concept-to-speech system using a knowledge base. In: Proceedings of the 5th International Conference on Spoken Language Processing. Sydney, Australia (1998)

    Google Scholar 

  51. Winter, S.: Modeling costs of turns in route planning. GeoInformatica 6(4), 345–361 (2002)

    Article  MATH  Google Scholar 

  52. Winter, S.: Route adaptive selection of salient features. In:  Kuhn, W.,  Worboys, M.,  Timpf, S. (eds.) Spatial Information Theory. Lecture Notes in Computer Science, vol. 2685, pp. 349–361. Springer, Berlin (2003)

    Google Scholar 

  53. Winter, S., Raubal, M., Nothegger, C.: Focalizing measures of salience for wayfinding. In:  Meng, L.,  Zipf, A.,  Reichenbacher, T. (eds.) Map-based Mobile Services: Theories, Methods and Implementations, pp. 127–142. Springer, Berlin (2005)

    Google Scholar 

  54. Winter, S., Richter, K.F., Baldwin, T., Cavedon, L., Stirling, L., Duckham, M., Kealy, A., Rajabifard, A.: Location-based mobile games for spatial knowledge acquisition. In: Janowicz, K., Raubal, M., Krüger, A.,  Keßler, C. (eds.) Cognitive Engineering for Mobile GIS (2011). Workshop at COSIT’11

    Google Scholar 

  55. Winter, S., Tomko, M., Elias, B., Sester, M.: Landmark hierarchies in context. Environ. Plann. B: Plann. Des. 35(3), 381–398 (2008)

    Article  Google Scholar 

  56. Zhang, X., Mitra, P., Klippel, A., MacEachren, A.: Automatic extraction of destinations, origins and route parts from human generated route directions. In:  Fabrikant, S.,  Reichenbacher, T.,  van Kreveld, M.,  Schlieder, C. (eds.) Geographic Information Science. Lecture Notes in Computer Science, vol. 6292, pp. 279–294. Springer, Berlin (2010)

    Chapter  Google Scholar 

  57. Zhang, X., Mitra, P., Klippel, A., MacEachren, A.M.: Identifying destinations automatically from human generated route directions. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS, pp. 373–376. ACM, New York (2011)

    Google Scholar 

  58. Zheng, Y.T., Zhao, M., Song, Y., Adam, H., Buddemeier, U., Bissacco, A., Brucher, F., Chua, T.S., Neven, H.: Tour the world: Building a web-scale landmark recognition engine. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1085–1092 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Richter, KF., Winter, S. (2014). Computational Aspects: How Landmarks Can Be Observed, Stored, and Analysed. In: Landmarks. Springer, Cham. https://doi.org/10.1007/978-3-319-05732-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05732-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05731-6

  • Online ISBN: 978-3-319-05732-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics