Skip to main content

Heterojunction Solar Cell Based on p-type PbS Quantum Dots and Two n-type Nanocrystals CdS and ZnO

  • Conference paper
  • First Online:
ICREGA’14 - Renewable Energy: Generation and Applications

Part of the book series: Springer Proceedings in Energy ((SPE))

  • 1665 Accesses

Abstract

Heterojunction solar cells based on PbS quantum dots (QDs) were prepared at room temperature via spin coating method. The PbS QDs were synthesized, characterized and utilized in p-n heterojunction solar cell structure. The effect of combining two different n-type nanoparticles on the solar cell photovoltaic performance was studied. The solar cells were characterized under 1 sun illumination (irradiation of 1,000 W/m2). The optimum solar cell by depositing PbS QDs layer onto ZnO/CdS nanoparticles layers exhibits a short-circuit current of 1.36 mA/cm2, open circuit voltage of 127 mV, and power conversion efficiency of 1.21 %, representing efficiency improvement more than 3 and 5 orders of magnitude compared with the case of employing only one n-type nanoparticles ZnO and CdS, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O.E. Semonin, J.M. Luther, S. Choi, H.Y. Chen, J. Gao, A.J. Nozik, M.C. Beard, Peak external photocurrent quantum efficiency exceeding 100 % via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011)

    Article  Google Scholar 

  2. R.D. Schaller, V.I. Klimov, High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004)

    Google Scholar 

  3. R.J. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozik, A. Shabaev, A.L. Efros, Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865–871 (2005)

    Article  Google Scholar 

  4. R.L. Sandberg, L.A. Padilha, M.M. Qazilbash, W.K. Bae, R.D. Schaller, J.M. Pietryga, M.J. Stevens, B. Baek, S.W. Nam, V.I. Klimo, Multiexciton dynamics in infrared-emitting colloidal nanostructures probed by a superconducting nanowire single Photon detector. ACS Nano 6, 9532–9540 (2012)

    Google Scholar 

  5. P.D. Cunningham, J.E. Boercker, E.E. Foos, M.P. Lumb, A.R. Smith, J.G. Tischler, J.S. Melinger, Enhanced multiple exciton generation in quasi-one-dimensional semiconductors. Nano Lett. 11, 3476–3481 (2011)

    Article  Google Scholar 

  6. K. Szendrei, W. Gomulya, M. Yarema, W. Heiss, M.A. Loi, PbS nanocrystal solar cells with high efficiency and fill factor. Appl. Phys. Lett. 97, 203501–203503 (2010)

    Article  Google Scholar 

  7. R. Debnath, J. Tang, D.A. Barkhouse, X. Wang, A.G. Pattantyus-Abraham, L. Brzozowski, E.H. Sargen, Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles. J. Am. Chem. Soc. 132, 5952–5953 (2010)

    Article  Google Scholar 

  8. H. Fu, S.W. Tsang, Y. Zhang, J. Ouyang, J. Lu, K. Yu, Y. Tao, Impact of the growth conditions of colloidal PbS nanocrystals on photovoltaic device performance. Chem. Mater. 23, 1805–1810 (2011)

    Article  Google Scholar 

  9. K.W. Johnston, A.G. Pattantyus-Abraham, J.P. Clifford, S.H. Myrskog, D.D. Mac Neil, L. Levina, E.H. Sargent, Schottky-quantum dot photovoltaics for efficient infrared power conversion. App. Phys. Lett. 92, 151113–151115 (2008)

    Article  Google Scholar 

  10. J. Tang, X. Wang, L. Brzozowski, D. Aaron, R. Barkhouse, R. Debnath, L. Levina, E.H. Sargent, Schottky quantum dot solar cells stable in air under solar illumination. Adv. Mater. 22, 1398–1402 (2010)

    Article  Google Scholar 

  11. J. Tang, L. Brzozowski, D. Barkhouse, X. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A.G. Pattantyus-Abraham, D. Jamakosmanovic, E.H. Sargent, Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability. ACS Nano 4, 869–878 (2010)

    Article  Google Scholar 

  12. N. Zhao, P.O. Tim, L.Y. Chang, M.G. Scott, D. Wanger, T.B. Maddalena, C.A. Alexi, G.B. Moungi, B. Vladimir, Colloidal PbS quantum dot solar cells with high fill factor. ACS Nano 4, 3743 (2010)

    Article  Google Scholar 

  13. G. Serap, P.F. Karolina, N. Helmut, S.S. Niyazi, K. Sandeep, D.S. Gregory, Hybrid solarcells using PbS nanoparticles. Sol. Energy Mat. Sol. C 91, 420 (2007)

    Article  Google Scholar 

  14. R. Chalita, C.R. Xiong, J.B. Kenneth, Fabrication of PbS quantum dot doped TiO2 nanotubes. ACS Nano 2, 1682 (2008)

    Article  Google Scholar 

  15. L.D. Wang, D.X. Zhao, Z.S. Su, D.Z. Shen, Hybrid polymer/ZnO solar cells sensitized by PbS quantum dots. Nanoscale Res. Lett. 7, 106 (2012)

    Article  Google Scholar 

  16. N. Zhou, G.P. Chen, X.L. Zhang, L.Y. Cheng, Y.H. Luo, D.M. Li, Q.B. Meng, Highly efficient PbS/CdS co-sensitized solar cells based on photoanodes with hierarchical pore distribution. Electrochem. Commun. 20, 97 (2012)

    Article  Google Scholar 

  17. J. Gao, J.M. Luther, O.E. Semonin, R.J. Ellingson, A.J. Nozik, M.C. Beard, n-Type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. Nano Lett. 11, 3263–3266 (2011)

    Article  Google Scholar 

  18. Y. Li, L. Wei, X. Chen, R. Zhang, X. Sui, Y. Chen, J. Jiao, L. Mei, Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays. Nanoscale Res. Lett. 8, 67 (2013)

    Article  Google Scholar 

  19. J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, E.H. Sargent, Quantum junction solar cells. Nano Lett. 12, 4889–4894 (2012)

    Article  Google Scholar 

  20. E.J.D. Klem, C.W. Gregory, G.B. Cunningham, S.D. Hall, S. Temple, J.S. Lewis, Planar PbS quantum dot heterojunction photovoltaic devices with 5.2 % power conversion efficiency. Appl. Phys. Lett. 100, 173104–173109 (2012)

    Article  Google Scholar 

  21. N. Zhao, T.P. Osedach, L.Y. Chang, S.M. Geyer, D. Wanger, M.T. Binda, A.C. Arango, M.G. Bawendi, V. Bulovic, Colloidal PbS quantum dot solar cells with high fill factor. ACS Nano 4, 3743–3752 (2010)

    Article  Google Scholar 

  22. X. Wang, G.I. Koleilat, A. Fischer, J. Tang, R. Debnath, L. Levina, E.H. Sargent, Enhanced open-circuit voltage in visible quantum dot photovoltaics by engineering of carrier-collecting electrodes. ACS Appl. Mater. Interf. 3, 3792–3795 (2011)

    Article  Google Scholar 

  23. P.R. Brown, R.R. Lunt, N. Zhao, T.P. Osedach, D.D. Wanger, L.Y. Chang, M.G. Bawendi, V. Bulović, Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer. Nano Lett. 11, 2955–2961 (2011)

    Article  Google Scholar 

  24. G. Pattantyus-Abraham, I.J. Kramer, A.R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M.K. Nazeeruddin, M. Grätzel, E.H. Sargent, Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 4, 3374–3380 (2010)

    Article  Google Scholar 

  25. J.M. Luther, J. Gao, M.T. Lloyd, O.E. Semonin, M.C. Beard, A.J. Nozik, Stability assessment on a 3 % bilayer PbS/ZnO quantum dot heterojunction solar cell. Adv. Mater. 22, 3704–3707 (2010)

    Article  Google Scholar 

  26. L.Y. Chang, Low-temperature solution-processed solar cells based on PbS colloidal quantum Dot/CdS heterojunctions. Nano Lett. 13, 994–999 (2013)

    Article  Google Scholar 

  27. H.M. García, M.T.S. Nair, P.K. Nair, All-chemically deposited Bi2S3/PbS solar cells. Thin Solid Films 519, 7364–7368 (2011)

    Article  Google Scholar 

  28. M. Gupta, V. Sharma, S. Shrivastava, A. Solanki, A.P. Singh, V.R. Satsangi, S. Dass, R. Shrivastav, Bull. Mater. Sci. 32, 23–30 (2009)

    Article  Google Scholar 

  29. R. Hyun, Y. Zhong, A.C. Bartnik, L. Sun, H.D. Abruña, F.W. Wise, J.D. Goodreau, J.R. Matthews, T.M. Leslie, N.F. Borrelli, Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. ACS Nano 2, 2206–2212 (2008)

    Article  Google Scholar 

  30. D. Lincot, G. Hodes, Chemical solution deposition of semiconducting and non-metallic films, in Proceedings of the International Symposium, Electrochemical Society (2006)

    Google Scholar 

  31. S. Dagher, I. Ayesh, N. Tit, Y. Haik, Influence of reactant concentration on optical properties of ZnO nanoparticles, Materials Technology. Adv. Perform. Mater. 29, 76–78 (2013)

    Google Scholar 

  32. N. Zhao, L. Qi, Low-temperature synthesis of star-shaped PbS nanocrystals in aqueous solutions of mixed cationic/anionic surfactants. Adv. Mater. 18, 359–362 (2006)

    Article  Google Scholar 

  33. S. Tsunekawa, T. Fukuda, A. Kasuya, J. Appl. Phys. 87, 1318 (2000)

    Article  Google Scholar 

  34. L.H.J. Lajunen, P. Perämäki, Absorption and Emission, 2nd edn. (Royal Society of Chemistry, Cambridge, 2004), p. 342

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Haik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dagher, S., Haik, Y., Ayesh, A., Tit, N. (2014). Heterojunction Solar Cell Based on p-type PbS Quantum Dots and Two n-type Nanocrystals CdS and ZnO. In: Hamdan, M., Hejase, H., Noura, H., Fardoun, A. (eds) ICREGA’14 - Renewable Energy: Generation and Applications. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-05708-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05708-8_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05707-1

  • Online ISBN: 978-3-319-05708-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics