Skip to main content

Maximum Power Control for Photovoltaic System Using Two Strategies

  • Conference paper
  • First Online:
ICREGA’14 - Renewable Energy: Generation and Applications

Part of the book series: Springer Proceedings in Energy ((SPE))

  • 1589 Accesses

Abstract

This paper presents fuzzy control method (Mamdani’s fuzzy inference method) for maximum power point tracking (MPPT) of photovoltaic (PV) system under varying irradiation and temperature conditions. The fuzzy control method has been compared with perturb and observe (P&O) method as one of the most widely conventional method used in this area. The different techniques have been analyzed and simulated. Fuzzy technique gives better and more reliable control for this application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Isidori, Nonlinear Control System (Springer, New York, 1989)

    Book  Google Scholar 

  2. J.J.E. Slotine, W. Li, Applied Nonlinear Control (Prentice-Hall, Englewood Cliffs, 1991)

    MATH  Google Scholar 

  3. T. Bocklisch, W. Schufft, S. Bocklisch, Predictive and optimizing energy management of photovoltaic fuel cell hybrid systems with short time energy storage, in Proceedings of 4th European Conference on PV-Hybrid and Mini-grid, pp. 8–15 (2008)

    Google Scholar 

  4. P.P. Kumar, B.K. Babu, Power-management strategies for a grid-connected PV-FC hybrid system by using fuzzy logic controller. Int. J. Mod. Eng. Res. 2(2), 358–364 (2012)

    Google Scholar 

  5. H. Al-Atrash, I. Batarseh, K. Rustom, Statistical modeling of DSP-based hill-climbing MPPT algorithms in noisy environments, in IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1773–1777 (2005)

    Google Scholar 

  6. C. Hua, J. Lin, C. Shen, Implementation of a DSP-controlled photovoltaic system with peak power tracking. IEEE Trans. Industr. Electron. 45(1), 99–107 (1998)

    Article  Google Scholar 

  7. D.P. Hohm, M.E. Ropp, Comparative study of maximum power point tracking algorithms. Prog. Photovoltaics Res. Appl. 11(1), 47–62 (2003)

    Article  Google Scholar 

  8. C. Liu, B. Wu, R. Cheung, Advanced algorithm for MPPT control of photovoltaic systems, in 1st Canadian Solar Buildings Research Network Conference, Montreal, Quebec, 20–24 Aug 2006

    Google Scholar 

  9. K.H. Hussein, I. Muta, T. Hoshino, M. Osakada, Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric condition, Proc. Inst. Electr. Eng. Gen. Transmiss. Distrib. 142(1), 59–64 (1995)

    Google Scholar 

  10. G.J. Yu, Y.S. Jung, J.Y. Choi, I. Choy, J.H. Song, G.S. Kim, A novel two-mode MPPT control algorithm based on comparative study of existing algorithms. Sol. Energy 76(4), 455–463 (2004)

    Article  Google Scholar 

  11. T. Noguchi, S. Togashi, R. Nakamoto, Short-current pulse-based maximum power point tracking method for multiple photovoltaic and converter module system. IEEE Trans. Ind. Electron. 49(1), 217–223 (2002)

    Article  Google Scholar 

  12. D.Y. Lee, H.J. Noh, D.S. Hyun, I. Choy, An improved MPPT converter using current compensation method for small scaled PV-applications, in Proceedings of APEC, pp. 540–545 (2003)

    Google Scholar 

  13. M. Park, I.K. Yu, A study on optimal voltage for MPPT obtained by surface temperature of solar cell, in Proceedings of IECON, pp. 2040–2045 (2004)

    Google Scholar 

  14. C. Hua, C. Shen, Study of maximum power tracking techniques and control of DC/DC converters for photovoltaic power system, in 9th Annual IEEE Power Electronics Specialists Conference, pp. 86–93 (1998)

    Google Scholar 

  15. I.S. Kim, M.B. Kim, M.J. Youn, New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system. IEEE Trans. Ind. Electron. 53(4), 1027–1035 (2006)

    Article  Google Scholar 

  16. J.A. Jianget, Maximum power tracking for photovoltaic power systems. Tamkang J. Sci. Eng. 8(2), 147–153 (2005)

    Google Scholar 

  17. R.D. Middlebrook, S. Cuk, A general unified approach to modelling switching-converter power stages, in IEEE PESC’76 Rec., Cleveland, 8–10 June 1976, pp. 18–34

    Google Scholar 

  18. E. Kamal, A. Aitouche, Design of maximum power fuzzy controller for PV systems based on the LMI-based stability Intelligent Systems in Technical and Medical Diagnostics. Adv. Int. Syst. Comput. 230, 77–88 (2013)

    Article  Google Scholar 

  19. V. Salas, E. Olias, A. Barrado, A. Lazaro, Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Sol. Energy Mater. Sol. Cells 90(11), 1555–1578 (2006)

    Article  Google Scholar 

  20. K. Kiruthika, J.P. Koujalagi, Fuzzy logic based maximum power point tracker in photovoltaic cell, Int. J. Sci. Res. 2(8), 313–317 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Harrabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Harrabi, N., Kamal, E., Aitouche, A., Souissi, M. (2014). Maximum Power Control for Photovoltaic System Using Two Strategies. In: Hamdan, M., Hejase, H., Noura, H., Fardoun, A. (eds) ICREGA’14 - Renewable Energy: Generation and Applications. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-05708-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05708-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05707-1

  • Online ISBN: 978-3-319-05708-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics