Skip to main content

Using Crowdsourcing to Capture Complexity in Human Interpretations of Multimedia Content

Part of the Advances in Computer Vision and Pattern Recognition book series (ACVPR)

Abstract

Large-scale crowdsourcing platforms are a key tool allowing researchers in the area of multimedia content analysis to gain insight into how users interpret social multimedia. The goal of this article is to support this process in a practical manner that opens the path for productive exploitation of complex human interpretations of multimedia content within multimedia systems. We first discuss in detail the nature of complexity in human interpretations of multimedia, and why we, as researchers, should look outward to the crowd, rather than inward to ourselves, to determine what users consider important about the content of images and videos. Then, we present strategies and insights from our own experience in designing tasks for crowdworkers. Our techniques are useful to researchers interested in eliciting information about the elements and aspects of multimedia that are important in the contexts in which humans use social multimedia.

Keywords

  • Social multimedia
  • Interpretation-sensitive multimedia
  • Crowdsourcing Task design
  • Visual concepts
  • Human interpretations
  • Contextual factors

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-05696-8_10
  • Chapter length: 41 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-05696-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.00
Price excludes VAT (USA)
Hardcover Book
USD   119.00
Price excludes VAT (USA)
Fig. 10.1
Fig. 10.2
Fig. 10.3
Fig. 10.4
Fig. 10.5
Fig. 10.6
Fig. 10.7
Fig. 10.8
Fig. 10.9
Fig. 10.10
Fig. 10.11
Fig. 10.12

Notes

  1. 1.

    https://www.mturk.com

  2. 2.

    http://www.crowdflower.com

  3. 3.

    http://www.microworkers.com

References

  1. Barthes R (1977) Image music text. Hill and Wang, New York

    Google Scholar 

  2. Beaver DI, Geurts B (2013) Presupposition. In: Zalta EN (ed) The Stanford encyclopedia of philosophy (Summer 2011 Edition). http://www.plato.stanford.edu/archives/fall2013/entries/presupposition/

  3. Borth D, Ji R, Chen T, Breuel T, Chang S-F (2013) Large-scale visual sentiment ontology and detectors using adjective noun pairs. In: Proceedings of the 21st ACM international conference on multimedia (MM ’13). ACM, New York, pp 223–232

    Google Scholar 

  4. Chen K-T, Chang C-J, Wu C-C, Chang Y-C, Lei C-L (2010) Quadrant of euphoria: a crowdsourcing platform for QoE assessment. IEEE Netw 24(2):28–35

    Google Scholar 

  5. Cockton G, Woolrich A (2001) Understanding inspection methods: lessons from an assessment of heuristic evaluation. In: Blandford A, Vanderdonckt J, Gray Ph (eds) People and computers XV–interaction without Frontiers, pp 171–191

    Google Scholar 

  6. Conotter V, Dang-Nguyen D-T, Boato G, Menéndez M, Larson M (2014) Assessing the impact of image manipulation on users’ perceptions of deception. In: Proc. SPIE 9014, Human Vision and Electronic Imaging XIX, 90140Y

    Google Scholar 

  7. Deng J, Dong W, Socher R, Li L-J, Li K, Li F-F (2009) ImageNet: a large-scale hierarchical image database. In: CVPR’09: IEEE conference on computer vision and pattern recognition, pp 248–255

    Google Scholar 

  8. Galli L, Fraternali P, Martinenghi D, Novak J (2012) A draw-and-guess game to segment images. In: SocialComm 2012 ASE/IEEE international conference on social computing, pp 914–917

    Google Scholar 

  9. Genevieve P (2012) SUN attribute database: discovering, annotating, and recognizing scene attributes. In Proceedings of the 2012 IEEE conference on computer vision and pattern recognition (CVPR), pp 2751–2758

    Google Scholar 

  10. Glaser BG, Strauss A (1967) Discovery of grounded theory. In: Strategies for qualitative research. Sociology Press, Mill Valley

    Google Scholar 

  11. Hossfeld T, Keimel C, Hirth M, Gardlo B, Habigt J, Diepold K, Tran-Gia P (2014) Best practices for QoE crowdtesting: QoE assessment with crowdsourcing. IEEE Trans Multimedia 16:541–558

    Google Scholar 

  12. Howe J (2006) The Rise of crowdsourcing wired. Wired Mag 14(06):1–6

    Google Scholar 

  13. Kennedy L, Hauptmann A (2006) LSCOM Lexicon definitions and annotations (Version 1.0). Computer science department, Paper 949. http://www.repository.cmu.edu/compsci/949

  14. Liu D, Hua X-S, Yang L, Wang M, Zhang H-J (2009) Tag ranking. In: WWW 2009 Proceedings of the 18th international conference on world wide web, pp. 351–360

    Google Scholar 

  15. Mason W, Suri S (2012) Conducting behavioral research on Amazon’s Mechanical Turk. Behav Res Methods 44(1):1–23

    Google Scholar 

  16. Morris RR, Dontcheva M, Gerber EM (2012) Priming for better performance in microtask crowdsourcing environments. IEEE Internet Comput 16(5):13–19

    Google Scholar 

  17. Murphy GL (2002) The big book of concepts. The MIT Press, Cambridge

    Google Scholar 

  18. Nie L, Yan S, Wang M, Hong R, Chua T-S (2012) Harvesting visual concepts for image search with complex queries. In: Proceedings of the 20th ACM international conference on multimedia (MM’12). ACM, New York, pp 59–68

    Google Scholar 

  19. Nielsen J (1994) Enhancing the explanatory power of usability heuristics. In: Proceedings of the ACM CHI’94 conference, pp 152–158

    Google Scholar 

  20. Nielsen J, Landauer TKA (1993) Mathematical model of the finding of usability problems. In: Proceedings of ACM INTERCHI’93 conference, pp 206–213

    Google Scholar 

  21. Nowak S, Rueger S (2010) How reliable are annotations via crowdsourcing: a study about inter-annotator agreement for multi-label image annotation. In: MIR’10 Proceedings of the international conference on multimedia, information retrieval

    Google Scholar 

  22. Paolacci G, Chandler J, Ipeirotis PG (2010) Running experiments on amazon mechanical turk. Judgment Decision Making 5:5

    Google Scholar 

  23. Parikh D, Grauman K (2011) Interactively building a discriminative vocabulary of nameable attributes. In: Computer vision and pattern recognition (CVPR), pp 1681–1688

    Google Scholar 

  24. Prelec D (2004) A bayesian truth serum for subjective data. Science 306(5695):462–6

    CrossRef  Google Scholar 

  25. Quinn AJ, Bederson BB (2011) Human computation: a survey and taxonomy of a growing field. Proc ACM CHI 2011:1403–12

    Google Scholar 

  26. Rafferty P, Hidderly R (2005) Indexing multimedia and creative works. Ashgate, Farnham

    Google Scholar 

  27. Ross J, Lilly Irani M, Silberman S, Zaldivar A, Tomlinson B (2010) Who are the crowdworkers?: shifting demographics in mechanical turk. In: CHI’10 Extended abstracts on human factors in computing systems (CHI EA’10). ACM, New York, pp 2863–2872

    Google Scholar 

  28. Smeaton AF, Over P, Kraaij W (2006) Evaluation campaigns and TRECVid. In: Proceedings of the 8th ACM international workshop on multimedia information retrieval (MIR’06) pp. 321–330

    Google Scholar 

  29. Snoek CGM, Freiburg B, Oomen J, Ordelman R (2010) Crowdsourcing rock n’ roll multimedia retrieval. In: MM’10 Proceedings of the international conference on multimedia, pp. 1535–1538

    Google Scholar 

  30. Szabó ZG (2013) Compositionality. In: Zalta EN (ed) The stanford encyclopedia of philosophy. (Fall, Fall River). http://www.plato.stanford.edu/archives/fall2013/entries/compositionality/

  31. Van den Haak MJ, Jong MDT, Schellens PJ (2004) Employing think-aloud protocols and constructive interaction to test the usability of online library catalogues: a methodological comparison. Interact Comput 16(6):1153–70

    CrossRef  Google Scholar 

  32. Van der Geest T, Spyridakis JH (2000) Developing heuristics for web communication. Tech Commun 47(3):359–82

    Google Scholar 

  33. Vliegendhart R, Larson MA, Pouwelse JA (2012) Discovering user perceptions of semantic similarity in near-duplicate multimedia files. In: CrowdSearch 2012: First international workshop on crowdsourcing web search, pp 54–58

    Google Scholar 

  34. Wieneck L, Düring M, Sillaume G, Lallemand C, Croce V, Lazzaro M, Nucci F, Pasini C, Fraternali P, Tagliasacchi M, Melenhorst M, Novak J, Micheel I (2013) Building the social graph of the history of European integration. A pipeline for humanist-machine interaction in the digital humanities. In: Proceedings of the conference histoinformatics 2013, Kyoto

    Google Scholar 

  35. Xirong Li; Snoek CGM, Worring M, Smeulders AWM (2012) Harvesting social images for bi-concept search. IEEE Trans Multimedia 14(4):1091–1104

    Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Commission’s 7th Framework Programme under grant agreements No. 287704 (CUbRIK) and No. 610594 (CrowdRec). It has also been supported by the Dutch national program COMMIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha Larson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Larson, M., Melenhorst, M., Menéndez, M., Xu, P. (2014). Using Crowdsourcing to Capture Complexity in Human Interpretations of Multimedia Content. In: Ionescu, B., Benois-Pineau, J., Piatrik, T., Quénot, G. (eds) Fusion in Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-05696-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05696-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05695-1

  • Online ISBN: 978-3-319-05696-8

  • eBook Packages: Computer ScienceComputer Science (R0)