Skip to main content

Pre-mRNA Splicing and the Spliceosome: Assembly, Catalysis, and Fidelity

  • Chapter
  • First Online:
Fungal RNA Biology

Abstract

At the level of gene architecture, the widespread presence of interrupting sequences in eukaryotic genes serves as a defining difference between eukaryotic organisms and other domains of life. These interrupting sequences, known as introns, must be precisely removed from pre-messenger RNA (pre-mRNA) transcripts. Concomitantly, the coding regions, or exons, are joined together through a nuclear-localized process known as pre-mRNA splicing. A number of splicing factors, both protein and RNA, assemble into a multimegadalton splicing machine known as the spliceosome, which is responsible for identifying the intronic regions and positioning the pre-mRNA substrate in a favorable orientation for the splicing reactions to occur. While the chemical steps of splicing—two sequential transesterification reactions—are identical in all eukaryotes, the gene architecture and splicing apparatus can differ substantially. Here, we review our current understanding of the splicing process with an emphasis on the model organism Saccharomyces cerevisiae. We discuss the key features of introns, along with mechanistic aspects of the splicing cycle, namely spliceosome assembly, catalysis, and spliceosome disassembly. We also highlight recent discoveries supporting the role of kinetic proofreading in ensuring the fidelity of splicing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abelson J (2013) Toggling in the spliceosome. Nat Struct Mol Biol 20:645–647

    PubMed  CAS  Google Scholar 

  • Abovich N, Liao XC, Robash M (1994) The yeast MUD2 protein: an interaction with PRP11 defines a bridge between commitment complexes and U2 snRNP addition. Genes Dev 8:843–854

    PubMed  CAS  Google Scholar 

  • Abovich N, Rosbash M (1997) Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals. Cell 89:403–412

    PubMed  CAS  Google Scholar 

  • Arenas JE, Abelson J (1997) Prp43: an RNA helicase-like factor involved in spliceosome disassembly. PNAS 94:11798–11802

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ares M Jr, Grate L, Pauling MH (1999) A handful of intron-containing genes produces the lion’s share of yeast mRNA. RNA 5:113–1139

    Google Scholar 

  • Bartels C, Urlaub H, Lührmann R et al (2003) Mutagenesis suggests several roles of Snu114p in pre-mRNA splicing. J Biol Chem 278:28324–28334

    PubMed  CAS  Google Scholar 

  • Bell M, Schreiner S, Damainov A et al (2002) p110, a novel human U6 snRNP protein and U4/U6 snRNP recycling factor. EMBO J 21:2724–2735

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bellare P, Small EC, Huang X et al (2008) A role for ubiquitin in the spliceosome assembly pathway. Nat Struct Mol Biol 15:444–451

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bon E, Casaregola S, Blandin G et al (2003) Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns. NAR 31:1121–1135

    PubMed Central  PubMed  CAS  Google Scholar 

  • Brenner TJ, Guthrie C (2005) Genetic analysis reveals a role for the C terminus of the Sacchaomyces cerevisiae GTPase Snu114 during spliceosome activation. Genetics 170:1063–1080

    PubMed Central  PubMed  CAS  Google Scholar 

  • Brenner TJ, Guthrie C (2006) Assembly of Snu114 into U5 snRNP requires Prp8 and a functional GTPase domain. RNA 12:862–871

    PubMed Central  PubMed  CAS  Google Scholar 

  • Brody E, Abelson J (1985) The “Spliceosome”: Yeast pre-messenger RNA associates with a 40S complex in a splicing-dependent reaction. Science 228:963–967

    PubMed  CAS  Google Scholar 

  • Brow DA, Guthrie C (1988) Spliceosomal RNA U6 is remarkably conserved from yeast to mammals. Nature 334:213–218

    PubMed  CAS  Google Scholar 

  • Brow DA, Guthrie C (1989) Splicing a spliceosomal RNA. Nature 337:14–15

    PubMed  CAS  Google Scholar 

  • Brow DA (2002) Allosteric cascade of spliceosomal activation. Annu Rev Genet 36:333–360

    PubMed  CAS  Google Scholar 

  • Brys A, Schwer B (1996) Requirement for Slu7 in yeast pre-mRNA splicing is dictated by the distance between the branchpoint and 3′ splice site. RNA 2:707–717

    PubMed Central  PubMed  CAS  Google Scholar 

  • BurgessSM Guthrie C (1993) A mechanism to enhance mRNA splicing fidelity: the RNA-dependent ATPase Prp16 governs usage of a discard pathway for aberrant lariat intermediates. Cell 73:1377–1391

    Google Scholar 

  • Burset M, Seledtov IA, Solovyev VV (2000) Analysis of canonical and non-canonicle splice sites in mammalian genomes. NAR 28:4364–4375

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cech T (1986) The generality of self-splicing RNA: relationship to nuclear mRNA splicing. Cell 44:207–210

    PubMed  CAS  Google Scholar 

  • Chan SP, Kao DI, Tsai WY et al (2003) The Prp19p-associated complex in splicesome activation. Science 302:279–282

    PubMed  CAS  Google Scholar 

  • Chan SP, Cheng SC (2005) The Prp19-associated complex is required for specifying interactions of U5 and U6 with the pre-mRNA during spliceosome activation. J Biol Chem 280:31190–31199

    PubMed  CAS  Google Scholar 

  • Chen HC, Cheng SC (2012) Functional roles of protein splicing factors. Biosci Rep 32:345–359

    PubMed Central  PubMed  Google Scholar 

  • Chen HC, Tseng CK, Tsai RT et al (2013) Link of NTR-mediated spliceosome disassembly with DEAH-box ATPases Prp2, Prp16, and Prp22. Mol Cell Biol 33:514–525

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chen JY, Stands L, Staley JP et al (2001) Specific alterations of U1-C protein or U1 small nuclear RNA can eliminate the requirement of Prp28p, an essential DEAD box splicing factor. Mol Cell 7:227–232

    PubMed  CAS  Google Scholar 

  • Cheng SC, Abelson J (1987) Spliceosome assembly in yeast. Genes Dev 1:1014–1027

    PubMed  CAS  Google Scholar 

  • Chua K, Reed R (1999) The RNA splicing factor hSlu7 is required for correct 3′ splice site choice. Nature 402:207–210

    PubMed  CAS  Google Scholar 

  • Collemare J, van der Burget A, de Wit PJ (2013) At the origin of spliceosomal introns: is multiplication of intron-like elements the main mechanism of intron gain in fungi? Commun. Integr. Biol. 6(2):e23147

    PubMed Central  PubMed  Google Scholar 

  • Company M, Arenas J, Abelson J (1991) Requirement of the RNA helicase-like Prp22 for release of messenger RNA from spliceosomes. Nature 349:487–493

    PubMed  CAS  Google Scholar 

  • Coulombe-Huntington J, Majewski J (2007) Characterization of intron loss events in mammals. Genome Res 17:23–32

    PubMed Central  PubMed  CAS  Google Scholar 

  • Crawford DJ, Hoskins AA, Friedman LJ et al (2013) Single-molecule colocalization FRET evidence that spliceosome activation precedes stable approach of 5′ splice site and branch site. PNAS 110:6783–6788

    PubMed Central  PubMed  CAS  Google Scholar 

  • Deutsch M, Long M (1999) Intron-exon structures of eukaryotic model organisms. NAR 27:3219–3228

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dlakic M, Mushegian A (2011) Prp8, the pivotal protein of the spliceosomal catalytic center, evolved from a retroelement-encoded reverse transcriptase. RNA 17:799–808

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dix I, Russell CS, O’Keefe RT et al (1998) Protein–RNA interactions in the U5 snRNP of Saccharomyces ceravisiae. RNA 4:1675–1686

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fabrizio P, Abelson J (1992) Thiophosphates in yeast U6 snRNA specifically affect pre-mRNA splicing in vitro. NAR. 20:3659–3664

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fabrizio P, Laggerbauer B, Lauber J et al (1997) An evolutionarily conserved U5 snRNP-specific protein is a GTP-binding factor closely related to the ribosomal translocase EF-2. EMBO 16:4092–4106

    CAS  Google Scholar 

  • Fabrizio P, Dannenberg J, Dube P et al (2009) The evolutionarily conserved core design of the catalytic activation step of the yeast spliceosome. Mol Cell 36:593–608

    PubMed  CAS  Google Scholar 

  • Farlow A, Meduri E, Schlötterer C (2011) DNA double-strand break repair and the evolution of intron density. Trends Genet 27:1–6

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fica SM, Tuttle N, Novak T et al (2013) RNA catalyses nuclear pre-mRNA splicing. Nature 503:229–234

    PubMed  CAS  Google Scholar 

  • Fink GR (1987) Pseudogenes in yeast? Cell 49:5–6

    PubMed  CAS  Google Scholar 

  • Fortner DM, Troy RG, Brow DA (1994) A stem/loop in U6 RNA defines a conformational switch required for pre-mRNA splicing. Genes Dev 8:221–233

    PubMed  CAS  Google Scholar 

  • Fourmann JB, Schmitzová J, Christian H et al (2013) Dissection of the factor requirements for spliceosome disassembly and the elucidation of its dissociation products using a purified splicing system. Genes Dev 27:413–428

    Google Scholar 

  • Fromont-Racine M, Mayes AE, Brunet-Simon A et al (2000) Genome-wide protein interaction screens reveal functional networks involving Sm-like proteins. Yeast 17:95–110

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gordon PM, Piccirilli JA (2001) Metal ion coordination by the AGC triad in domain 5 contributes to group II intron catalysis. Nat Struct Biol 8:893–898

    PubMed  CAS  Google Scholar 

  • Gozani O, Feld R, Reed R (1996) Evidence that sequence-independent binding of highly conserved U2 snRNP proteins upstream of the branch site is required for assembly of splicesomal complex A. Genes Dev 10:233–243

    PubMed  CAS  Google Scholar 

  • Gozani O, Potashkin J, Reed R (1998) A potential role for U2AF-SAP 155 interactions in recruiting U2 snRNP to the branch site. Mol Cell Biol 18:4752–4760

    PubMed Central  PubMed  CAS  Google Scholar 

  • Grabowski PJ, Seiler SR, Sharp PA (1985) A multicomponent complex is involved in the splicing of messenger RNA precursors. Cell 42:345–353

    PubMed  CAS  Google Scholar 

  • Guthrie C, Patterson B (1988) Spliceosomal snRNAs. Annu Rev Genet 22:387–419

    PubMed  CAS  Google Scholar 

  • Hahn D, Kudla G, Tollervey D et al (2012) Brr2p-mediated conformational rearrangements in the spliceosome during activation and substrate repositioning. Genes Dev 26:2408–2421

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hilliker AK, Staley JP (2004) Multiple functions for the invariant AGC triad of U6 snRNA. RNA 10:921–928

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hilliker AK, Mefford MA, Staley JP (2007) U2 toggles iteratively between the stem IIa and stem IIc conformations to promote pre-mRNA splicing. Genes Dev 21:821–834

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hopfield JJ (1974) Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. PNAS 71:4135–4139

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hoskins AA, Friedman LJ, Gallagher SS et al (2011) Ordered and dynamic assembly of single spliceosomes. Science 331:1289–1295

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jackson SP, Lossky M, Beggs JD (1988) Cloning of the RNA8 gene of Saccharomyces cerevisiae, detection of the RNA8 protein, and demonstration that it is essential for nuclear pre-mRNA splicing. Mol Cell Biol 8:1067–1075

    PubMed Central  PubMed  CAS  Google Scholar 

  • James SA, Turner W, Schwer B (2002) How Slu7 and Prp18 cooperate in the second step of yeast pre-mRNA splicing. RNA 8:1068–1077

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jurica MS, Moore MJ (2003) Pre-mRNA splicing: awash in a sea of proteins. Mol Cell 12:5–14

    PubMed  CAS  Google Scholar 

  • Käufer NF, Potashkin J (2000) Analysis of the splicing machinery in fission yeast: a comparison with budding yeast and mammals. NAR 28:3003–3010

    PubMed Central  PubMed  Google Scholar 

  • Kistler AL, Guthrie C (2001) Deletion of MUD2, the yeast homolog of U2AF65, can bypass the requirement for Sub2, an essential spliceosomal ATPase. Genes Dev 15:42–49

    PubMed Central  PubMed  CAS  Google Scholar 

  • Konarska MM, Grabowski PJ, Padgett RA et al (1985) Characterization of the branch site in lariat RNAs produced by splicing of mRNA precursors. Nature 313:552–557

    PubMed  CAS  Google Scholar 

  • Koodathingal P, Novak T, Piccirilli JA et al (2013) The DEAH-box ATPase Prp16 and Prp43 cooperate to proofread 5′ splice site cleavage during pre-mRNA splicing. Mol Cell 39:385–395

    Google Scholar 

  • Kuhn AN, Li Z, Brow DA (1999) Splicing factor Prp8 governs U4/U6 RNA unwinding during activation of the spliceosome. Mol Cell 3:65–75

    PubMed  CAS  Google Scholar 

  • Kuhn AN, Reichl EM, Brow DA (2002) Distinct domains of splicing factor Prp8 mediate different aspects of spliceosome activation. PNAS 99:9145–9149

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kwan SS, Brow DA (2005) The N- and C-terminal RNA recognition motifs of splicing factor Prp24 have distinct functions in U6 binding. RNA 11:808–820

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lardelli RM, Thompson JX, Yates JR et al (2010) Release of SF3 from the intron branchpoint activates the first catalytic step of pre-mRNA splicing. RNA 16:516–528

    PubMed Central  PubMed  Google Scholar 

  • Lee C, Jaladat Y, Mohammadi A et al (2010) Metal binding and substrate positioning by evolutionarily invariant U6 sequences in catalytically active protein-free snRNAs. RNA 16:2226–2238

    PubMed Central  PubMed  CAS  Google Scholar 

  • Legrain P, Séraphin B, Robash M (1985) Early commitment of yeast pre-mRNA to the spliceosome pathway. Mol Cell Biol 8:3755–3760

    Google Scholar 

  • Li Z, Brow D (1996) A spontaneous duplication in U6 spliceosomal RNA uncouples the early and late functions of the ACAGA element in vivo. RNA 2:879–894

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liu HL, Cheng SC (2012) The interaction of Prp2 with a defined region of the intron is required for the first splicing reaction. Mol Cell Biol 32:5056–5066

    PubMed Central  PubMed  CAS  Google Scholar 

  • Madhani HD, Guthrie C (1992) A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell 71:803–817

    PubMed  CAS  Google Scholar 

  • Maeder C, Kutach AK, Guthrie C (2009) ATP-dependent unwinding of U4/U6 snRNAs by the Brr2 helicase requires the C terminus of Prp8. Nat Struct Mol Biol 16:42–48

    PubMed Central  PubMed  CAS  Google Scholar 

  • Maschhloff K, Padgett R (1993) The stereochemical course of the first step of pre-mRNA splicing. NAR. 21:5456–5462

    Google Scholar 

  • Mayas RM, Maita H, Staley JP (2006) Exon ligation is proofread by the DExD/H-box ATPase Prp22p. Nat Struct Mol Biol 13:482–490

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mayes AE, Verdone L, Legrain P et al (1999) Characterization of Sm-like proteins in yeast and their association with U6 snRNA. EMBO J 18:4321–4331

    PubMed Central  PubMed  CAS  Google Scholar 

  • McGrail JC, Krause A, O’Keefe RT (2009) The RNA binding protein Cwc2 interacts directly with the U6 snRNA to link the nineteen complex to the spliceosome during pre-mRNA splicing. NAR 37:4205–4217

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mefford MA, Staley JP (2009) Evidence that U2/U6 helix I promotes both catalytic steps of pre-mRNA splicing and rearranges in between these steps. RNA 15:1386–1397

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mekouar M, Blanc-Lenfle I, Ozanne C et al (2010) Detection and analysis of alternative splicing in Yarrowia lipolytica reveal structural constraints facilitating nonsense-mediated decay of intron-retaining transcripts. Genome Biol 11:R65. doi:10.1186/gb-2010-11-6-r65

    PubMed Central  PubMed  Google Scholar 

  • Mitrovich QM, Guthrie C (2007) Evolution of small nuclear RNAs in S. cerevisiae, C. albicans, and other hemiascomycetous yeasts. RNA 13:2066–2080

    PubMed Central  PubMed  CAS  Google Scholar 

  • Moore MJ, Sharp PA (1993) Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing. Nature 365:364–368

    PubMed  CAS  Google Scholar 

  • Mozaffari-Jovin S, Santos KF, Hsiao HH et al (2012) The Prp8 RNase H-like domain inhibits Brr2-mediated U4/U6 snRNA unwinding by blocking Brr2 loading onto the U4 snRNA. Genes Dev 26:2422–2434

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mozaffari-Jovin S, Wandersleben T, Santos KF et al (2013) Inhibition of RNA helicase Brr2 by the C-terminal tail of the spliceosomal protein Prp8. Science 341:80–84

    PubMed  CAS  Google Scholar 

  • Neuvéglise C, Marck C, Gaillardin C (2011) The intronome of budding yeasts. C R Biol 34:662–670

    Google Scholar 

  • Newman AJ, Teigelkamp S, Beggs JD (1995) snRNA interactions at 5′ and 3′ splice sites monitored by photoactivated crosslinking in yeast spliceosomes. RNA 1:968–980

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nielsen KH, Staley JP (2012) Spliceosome activation: U4 is the path, stem I is the goal, and Prp8 is the keeper. Let’s cheer for the ATPase Brr2! Genes Dev 26:2461–2467

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ninio J (1975) Kinetic amplification of enzyme discrimination. Biochimie 57:587–595

    PubMed  CAS  Google Scholar 

  • O’Day CL, Dalbadie-McFarland G, Abelson J (1996) The Saccharomyces cerevisiae Prp5 protein has RNA-dependent ATPase activity with specificity for U2 small nuclear RNA. J Biol Chem 271:33261–33267

    PubMed  Google Scholar 

  • Ohi MD, Vander Kooi CW, Rosenberg JA et al (2003) Structural insights into the U-box, a domain associated with multi-ubiquitination. Nat Struct Biol 10:250–255

    Google Scholar 

  • Ohrt T, Odenwälder P, Dannenberg J et al (2013) Molecular dissection of step 2 catalysis of yeast pre-mRNA splicing investigated in a purified system. RNA 19:902–915

    PubMed  CAS  Google Scholar 

  • Oubridge C, Ito N, Evans PR et al (1994) Crystal structure at 1.92 Å resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372:432–438

    PubMed  CAS  Google Scholar 

  • Padgett RA, Konarska MM et al (1984) Lariat RNAs as intermediates and products in the splicing of messenger RNA precursors. Science 225:898–903

    PubMed  CAS  Google Scholar 

  • Parker R, Siliciano PG, Guthrie C (1987) Recognition of the TACTAAC box during mRNA splicing in yeast involves base pairing to the U2-like snRNA. Cell 49:229–239

    PubMed  CAS  Google Scholar 

  • Patterson B, Guthrie C (1987) An essential yeast snRNA with a U5-like domain is required for splicing in vivo. Cell 49:613–624

    PubMed  CAS  Google Scholar 

  • Peebles CL, Zhang M, Perlman PS et al (1995) Catalytically critical nucleotides in domain 5 of a group II intron. PNAS 92:4422–4426

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pena V, Rozov A, Fabrizio P et al (2008) Structure and function of an RNAse H domain at the heart of the splicesome. EMBO J 27:2929–2940

    PubMed Central  PubMed  CAS  Google Scholar 

  • Puig O, Gottschalk A, Fabrizio P et al (1999) Interaction of the U1 snRNP with nonconserved intronic sequences affects 5′ splice site selection. Genes Dev 13:569–580

    PubMed Central  PubMed  CAS  Google Scholar 

  • Puig O, Bragado-Nilsson E, Koski T et al (2007) The U1 snRNP-associated factor Luc7p affects 5′ splice site selection in yeast and human. NAR 35:5874–5885

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rader SD, Guthrie C (2002) A conserved Lsm-interaction motif in Prp24 required for efficient U4/U6 di-snRNP formation. RNA 8:1378–1392

    PubMed Central  PubMed  CAS  Google Scholar 

  • Raghunathan PL, Guthrie C (1998a) A spliceosomal recycling factor that reanneals U4 and U6 small nuclear ribonucleoprotein particles. Science 29:857–860

    Google Scholar 

  • Raghunathan PL, Guthrie C (1998b) RNA unwinding in U4/U6 snRNPs requires ATP hydrolysis and the DEIH-box splicing factor Brr2. Curr Biol 8:847–855

    PubMed  CAS  Google Scholar 

  • Rhode BM, Hartmuth K, Westhof E et al (2006) Proximity of conserved U6 and U2 snRNA elements to the 5′ splice site region in activated spliceosomes. EMBO J 25:2475–2486

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rymond BC, Rosbash M (1985) Cleavage of 5′ splice site and lariat formation are independent of 3′ splice site in yeast mRNA splicing. Nature 317:735–737

    PubMed  CAS  Google Scholar 

  • Sakharkar K, Chow V, Kangueane P (2004) Distribution of exons and introns in the human genome. In Silico Biol 4:387–393

    PubMed  CAS  Google Scholar 

  • Schellenberg MJ, Wu T, Ritchie DB et al (2013) A conformational switch in Prp8 mediates metal ion coordination that promotes pre-mRNA exon ligation. Nat Struct Mol Biol 20:728–724

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schwer B, Guthrie C (1991) Prp16 is an RNA-dependent ATPase that interacts transiently with the spliceisome. Nature 349:494–499

    PubMed  CAS  Google Scholar 

  • Schwer B, Guthrie C (1992) A conformational rearrangement in the spliceosome is dependent on Prp16 and ATP hydrolysis. J EMBO 11:5033–5039

    CAS  Google Scholar 

  • Schwer B, Gross CH (1998) Prp22, a DExD-box RNA helicase, plays two distinct roles in yeast pre-mRNA splicing. EMBO J 17:2086–2094

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schwer B (2008) A conformational rearrangement in the spliceosome sets the stage for Prp22-dependent mRNA release. Mol Cell 30:743–754

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schwer B, Chang J, Shuman S (2013) Structure-function analysis of the 5′ end of yeast U1 snRNA highlights genetic interactions with the Msl5∙Mud2 branchpoint-binding complex and other spliceosome assembly factors. NAR 41:7485–7500

    PubMed Central  PubMed  CAS  Google Scholar 

  • Semlow DR, Staley JP (2012) Staying on message: Ensuring fidelity in pre-mRNA splicing. Trends Biochem Sci 37:263–273

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shannon KW, Guthrie C (1991) Suppressors of a U4 snRNA mutation define a novel U6 snRNP protein with RNA-binding motifs. Genes Dev 5:773–785

    PubMed  CAS  Google Scholar 

  • Shuster EO, Guthrie C (1988) Two conserved domains of yeast U2 snRNA are separated by 945 nonessential nucleotides. Cell 55:41–48

    PubMed  CAS  Google Scholar 

  • Shuster EO, Guthrie C (1990) Human U2 snRNA can function in pre-mRNA splicing in yeast. Nature 345:270–273

    PubMed  CAS  Google Scholar 

  • Sigel RK, Vaidya A, Pyle AM (2000) Metal ion binding sites in a group II intron core. Nat Struct Biol 7:1111–1116

    PubMed  CAS  Google Scholar 

  • Siliciano PG, Guthrie C (1988) 5′ splice site selection in yeast: genetic alterations in base-pairing with U1 reveal additional requirements. Genes Dev 2:1258–1267

    PubMed  CAS  Google Scholar 

  • Small EC, Leggett SR, Winans AA et al (2006) The EF-G-like GTPase Snu114p regulates spliceosome dynamics mediated by Brr2p, a DExD/H box ATPase. Mol Cell 23:389–399

    PubMed Central  PubMed  CAS  Google Scholar 

  • Song EJ, Werner SL, Neubauer J et al (2010) The Prp19 complex and the Usp4Sart3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome. Genes Dev 24:1434–1447

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sontheimer EJ, Steitz JA (1993) The U5 and U6 small nuclear RNAs as active site components of the spliceosome. Science 262:1989–1996

    PubMed  CAS  Google Scholar 

  • Soochin C, Suk-Won J, Cohen A et al (2004) A phylogeny of Caenorhabditis reveals frequent loss of introns during nematode evolution. Genome Res 14:1207–1220

    Google Scholar 

  • Staley JP, Guthrie C (1999) An RNA switch at the 5′ splice site requires ATP and the DEAD box protein Prp28p. Mol Cell 3:55–64

    PubMed  CAS  Google Scholar 

  • Steitz TA, Steitz JA (1993) A general two-metal-ion mechanism for catalytic RNA. PNAS 90:6498–6502

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stevens SW, Barta I, Ge HY et al (2001) Biochemical and genetic analyses of the U5, U6, and U4/U6∙U5 small nucler ribonucleoproteins from Saccharomyces cerevisiea. RNA 7:1543–1553

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stevens SW, Ryan DE, Ge HY et al (2002) Composition and functional characterization of the yeast spliceosomal penta-snRNP. Mol Cell 9:31–44

    PubMed  CAS  Google Scholar 

  • Spingola M, Grate L, Haussler D et al (1999) Genome-wide bioinformatics and molecular analysis of introns in Saccharomyces cerevisiae. RNA 5:221–234

    PubMed Central  PubMed  CAS  Google Scholar 

  • Surowy CS, van Santen VL, Scheib-Wixted SM et al (1989) Direct, sequence specific binding of the human U1-70 k ribonucleoprotein antigen protein to loop I of U1 small nuclear RNA. Mol Cell Biol 9:4179–4186

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tanaka N, Aronova A, Schwer B (2007) Ntr1 activates the Prp43 helicase to trigger release of lariat-intron from the spliceosome. Genes Dev 21:2312–2325

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tsai RT, Fu RH, Yeh FL et al (2005) Spliceosome disassembly catalyzed by Prp43 and its associated components Ntr1 and Ntr2. Genes Dev 19:2991–3003

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tsai RT, Tseng CK, Lee PJ et al (2007) Dynamic interactions of Ntr1-Ntr2 with Prp43 and with U5 govern the recruitment of Prp43 to mediate spliceosome disassembly. J Mol Cell Biol 27:8027–8037

    CAS  Google Scholar 

  • Tseng CK, Liu HL, Cheng SC (2011) DEAH-box ATPase Prp16 has dual roles in remodeling of the spliceosome in catalytic steps. RNA 17:145–154

    PubMed Central  PubMed  CAS  Google Scholar 

  • Valadkhan S, Manley J (2001) Splicing-related catalysis by protein-free snRNAs. Nature 413:701–707

    PubMed  CAS  Google Scholar 

  • Van der Veen R, Arnberg A, van der Horst G et al (1986) Excised group II introns in yeast mitochondria are lariats and can be formed by self-splicing in vitro. Cell 44:225–234

    PubMed  Google Scholar 

  • Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    PubMed  CAS  Google Scholar 

  • Vidovic I, Nottrott S, Hartmuth K et al (2000) Crystal structure of the spliceosomal 15.5kD protein bound to a U4 snRNA fragment. Mol Cell 6:1331–1342

    PubMed  CAS  Google Scholar 

  • Vinogradov AE (2001) Intron length and codon usage. J Mol Evol 52:2–5

    PubMed  CAS  Google Scholar 

  • Wang Q, Zhang L, Lynn B et al (2008) A BBP-Mud2p heterodimer mediates branchpoint recognition and influences splicing substrate abundance in budding yeast. NAR 36:2787–2798

    PubMed Central  PubMed  CAS  Google Scholar 

  • Warkocki Z, Odenwälder P, Schmitzová J et al (2009) Reconstitution of both steps of Saccharomyces cerevisiae splicing with purified spliceosomal components. Nat Struct Mol Biol 16:1237–1243

    PubMed  CAS  Google Scholar 

  • Weber S, Aebi M (1988) In vitro splicing of mRNA precursors: 5′ cleavage site can be predicted from the interaction between the 5′ splice site region and the 5′ terminus of U1 snRNA. NAR 16:471–486

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wiest DK, O’Day CL, Abelson J (1996) In vitro studies of the Prp9∙Prp11∙Prp21 complex indicate a pathway for U2 small nuclear ribonucleoprotein activation. J Biol Chem 271:33268–33276

    PubMed  CAS  Google Scholar 

  • Wood V, Gwilliam R, Rajandream MA et al (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880

    PubMed  CAS  Google Scholar 

  • Wu S, Romfo CM, Nilsen TW et al (1999) Functional recognition of the 3′ splice site AG by the splicing factor U2AF35. Nature 402:832–835

    PubMed  CAS  Google Scholar 

  • Xu D, Nouraini S, Field D et al (1996) An RNA-dependent ATPase associated with U2/U6 snRNAs in pre-mRNA splicing. Nature 381:709–713

    PubMed  CAS  Google Scholar 

  • Xu YZ, Query CC (2007) Competition between the ATPase Prp5 and branch region U2 snRNA pairing modulates the fidelity of spliceosome assembly. Mol Cell 28:838–849

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yang F, Wang X, Zhang ZM et al (2013) Splicing proofreading at 5′ splice sites by ATPase Prp28p. NAR 41:4660–4670

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yean SL, Wuenschell G, Termini J et al (2000) Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome. Nature 408:881–884

    PubMed  CAS  Google Scholar 

  • Zhu T, Niu DK (2013) Mechanisms of intron loss and gain in the fission yeast Schizosaccharomyces. PLoS ONE 8:e61683

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSERC Discovery Grant 298521 to SDR and an NSERC PGS award to EAD, as well as by awards from UNBC’s Office of Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Rader .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dunn, E.A., Rader, S.D. (2014). Pre-mRNA Splicing and the Spliceosome: Assembly, Catalysis, and Fidelity. In: Sesma, A., von der Haar, T. (eds) Fungal RNA Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-05687-6_2

Download citation

Publish with us

Policies and ethics