Skip to main content

Convergence of Finite Volume Scheme for Degenerate Parabolic Problem with Zero Flux Boundary Condition

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS,volume 77)

Abstract

This note is devoted to the study of the finite volume methods used in the discretization of degenerate parabolic-hyperbolic equation with zero-flux boundary condition. The notion of an entropy-process solution, successfully used for the Dirichlet problem, is insufficient to obtain a uniqueness and convergence result because of a lack of regularity of solutions on the boundary. We infer the uniqueness of an entropy-process solution using the tool of the nonlinear semigroup theory by passing to the new abstract notion of integral-process solution. Then, we prove that numerical solution converges to the unique entropy solution as the mesh size tends to 0.

Keywords

  • Dirichlet Problem
  • Integral Solution
  • Entropy Solution
  • Young Measure
  • Accretive Operator

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-05684-5_29
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-05684-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1

References

  1. Andreianov, B.: In: H.H. Chen G.-Q., K. Karlsen (eds.) Hyperbolic Conservation Laws and Related Analysis with Applications, Springer Proceedings in Mathematics and Statistics, vol. 29, pp. 1–22

    Google Scholar 

  2. Andreianov, B., Bendahmane, M., Karlsen, K.: Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations. J. Hyperb. Diff. Eq. 7, 1–67 (2010)

    Google Scholar 

  3. Andreianov, B., Bouhsiss, F.: Uniqueness for an elliptic-parabolic problem with Neumann boundary condition. J. Evol. Eq. 4, 273–295 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Andreianov, B.: Gazibo Karimou, M.: Entropy formulation of degenerate parabolic equation with zero-flux boundary condition. Z. Angew. Math. Phys. 64(5), 1471–1491 (2013)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Barthélémy, L., Bénilan, P.: Subsolutions for abstract evolution equations. Potential Anal. 1(1), 93–113 (1992)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Bénilan, P., Crandall, M.G., Pazy, A.: Nonlinear evolution equations in Banach spaces. (Preprint book)

    Google Scholar 

  7. Bürger, R., Frid, H., Karlsen, K.H.: On the well-posedness of entropy solutions to conservation laws with a zero-flux boundary condition. J. Math. Anal. Appl. 326(1), 108–120 (2007)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handb. Numer. Anal. 7, 713–1018 (2000)

    Google Scholar 

  9. Eymard, R., Gallouët, T., Herbin, R., Michel, A.: Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math. 92(1), 41–82 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. Gazibo Karimou, M.: Etudes mathématiques et numériques des problèmes paraboliques avec des conditions aux limites. Thèse de Doctorat Besançon (2013)

    Google Scholar 

  11. Panov, E.Y.: Existence of strong traces for quasi-solutions of multidimensional conservation laws. J. Hyperb. Diff. Eq. 4(4), 729–770 (2007)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Panov, E.Y.: On the strong pre-compactness property for entropy solutions of a degenerate elliptic equation with discontinuous flux. J. Differ. Eq. 247(10), 2821–2870 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Vasseur, A.: Strong traces for solutions of multidimensional scalar conservation laws. Arch. Ration. Mech. Anal. 160(3), 181–193 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been supported by the French ANR project CoToCoLa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Andreianov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Andreianov, B., Gazibo, M.K. (2014). Convergence of Finite Volume Scheme for Degenerate Parabolic Problem with Zero Flux Boundary Condition. In: Fuhrmann, J., Ohlberger, M., Rohde, C. (eds) Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects. Springer Proceedings in Mathematics & Statistics, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-319-05684-5_29

Download citation