Abstract
This note is devoted to the study of the finite volume methods used in the discretization of degenerate parabolic-hyperbolic equation with zero-flux boundary condition. The notion of an entropy-process solution, successfully used for the Dirichlet problem, is insufficient to obtain a uniqueness and convergence result because of a lack of regularity of solutions on the boundary. We infer the uniqueness of an entropy-process solution using the tool of the nonlinear semigroup theory by passing to the new abstract notion of integral-process solution. Then, we prove that numerical solution converges to the unique entropy solution as the mesh size tends to 0.
Keywords
- Dirichlet Problem
- Integral Solution
- Entropy Solution
- Young Measure
- Accretive Operator
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options

References
Andreianov, B.: In: H.H. Chen G.-Q., K. Karlsen (eds.) Hyperbolic Conservation Laws and Related Analysis with Applications, Springer Proceedings in Mathematics and Statistics, vol. 29, pp. 1–22
Andreianov, B., Bendahmane, M., Karlsen, K.: Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations. J. Hyperb. Diff. Eq. 7, 1–67 (2010)
Andreianov, B., Bouhsiss, F.: Uniqueness for an elliptic-parabolic problem with Neumann boundary condition. J. Evol. Eq. 4, 273–295 (2004)
Andreianov, B.: Gazibo Karimou, M.: Entropy formulation of degenerate parabolic equation with zero-flux boundary condition. Z. Angew. Math. Phys. 64(5), 1471–1491 (2013)
Barthélémy, L., Bénilan, P.: Subsolutions for abstract evolution equations. Potential Anal. 1(1), 93–113 (1992)
Bénilan, P., Crandall, M.G., Pazy, A.: Nonlinear evolution equations in Banach spaces. (Preprint book)
Bürger, R., Frid, H., Karlsen, K.H.: On the well-posedness of entropy solutions to conservation laws with a zero-flux boundary condition. J. Math. Anal. Appl. 326(1), 108–120 (2007)
Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handb. Numer. Anal. 7, 713–1018 (2000)
Eymard, R., Gallouët, T., Herbin, R., Michel, A.: Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math. 92(1), 41–82 (2002)
Gazibo Karimou, M.: Etudes mathématiques et numériques des problèmes paraboliques avec des conditions aux limites. Thèse de Doctorat Besançon (2013)
Panov, E.Y.: Existence of strong traces for quasi-solutions of multidimensional conservation laws. J. Hyperb. Diff. Eq. 4(4), 729–770 (2007)
Panov, E.Y.: On the strong pre-compactness property for entropy solutions of a degenerate elliptic equation with discontinuous flux. J. Differ. Eq. 247(10), 2821–2870 (2009)
Vasseur, A.: Strong traces for solutions of multidimensional scalar conservation laws. Arch. Ration. Mech. Anal. 160(3), 181–193 (2001)
Acknowledgments
This work has been supported by the French ANR project CoToCoLa.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Andreianov, B., Gazibo, M.K. (2014). Convergence of Finite Volume Scheme for Degenerate Parabolic Problem with Zero Flux Boundary Condition. In: Fuhrmann, J., Ohlberger, M., Rohde, C. (eds) Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects. Springer Proceedings in Mathematics & Statistics, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-319-05684-5_29
Download citation
DOI: https://doi.org/10.1007/978-3-319-05684-5_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05683-8
Online ISBN: 978-3-319-05684-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)