Advertisement

Automorphism Groups of Certain Rational Hypersurfaces in Complex Four-Space

  • Adrien DuboulozEmail author
  • Lucy Moser-Jauslin
  • Pierre-Marie Poloni
Conference paper
  • 704 Downloads
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 79)

Abstract

The Russell cubic is a smooth contractible affine complex threefold which is not isomorphic to affine three-space. In previous articles, we discussed the structure of the automorphism group of this variety. Here we review some consequences of this structure and generalize some results to other hypersurfaces which arise as deformations of Koras–Russell threefolds.

Notes

Acknowledgements

This research was supported in part by the ANR Grant BirPol ANR-11-JS01-004-01.

References

  1. 1.
    S. Abhyankar, P. Eakin, W. Heinzer, On the uniqueness of the coefficient ring in a polynomial ring. J. Algebra 23, 310–342 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    A. Dubouloz, L. Moser-Jauslin, P.-M. Poloni, Inequivalent embeddings of the Koras-Russell cubic threefold. Mich. Math. J. 59(3), 679–694 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    A. Dubouloz, L. Moser-Jauslin, P.-M. Poloni, Non cancellation for smooth contractible affine threefolds. Proc. Am. Math. Soc. 139, 4273–4284 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    R. Hartshorne, Deformation Theory. Graduate Texts in Mathematics, vol. 257 (Springer, New York, 2010)Google Scholar
  5. 5.
    S. Kaliman, Polynomials with general C 2-fibers are variables. Pac. J. Math. 203(1), 161–190 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    S. Kaliman, L. Makar-Limanov, On the Russell-Koras contractible threefolds. J. Algebraic Geom. 6(2), 247–268 (1997)zbMATHMathSciNetGoogle Scholar
  7. 7.
    S. Kaliman; L. Makar-Limanov, AK-invariant of affine domains, in Affine Algebraic Geometry (Osaka University Press, Osaka, 2007), pp. 231–255Google Scholar
  8. 8.
    S. Kaliman; M. Zaidenberg, Affine modifications and affine varieties with a very transitive automorphism group. Transform. Groups 4, 53–95 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    S. Kaliman, M. Koras, L. Makar-Limanov, P. Russell, \(\mathbb{C}^{{\ast}}\)-actions on \(\mathbb{C}^{3}\) are linearizable. Electron. Res. Announc. Am. Math. Soc. 3, 63–71 (1997)Google Scholar
  10. 10.
    M. Koras, P. Russell, C -actions on C 3: the smooth locus of the quotient is not of hyperbolic type. J. Algebraic Geom. 8(4), 603–694 (1999)Google Scholar
  11. 11.
    L. Moser-Jauslin, Automorphism groups of Koras-Russell threefolds of the first kind, in Proceedings of “Affine Algebraic Geometry: A conference in Honour of Peter Russell”, Montreal 1–5 June 2009. CRM Proceedings Lecture Notes, vol. 54 (2011), pp. 261–270MathSciNetGoogle Scholar
  12. 12.
    M. Nagata, A remark on the unique factorization theorem. J. Math. Soc. Jpn. 9(1), 143–145 (1957)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    A. Sathaye, Polynomial ring in two variables over a D.V.R.: a criterion. Invent. Math. 74, 159–168 (1983)Google Scholar
  14. 14.
    A. van den Essen, S. Maubach, S.Vénéreau, The special automorphism group of R[t]∕(t m)[x 1 , x n] and coordinates of a subring of R[t][x 1, , x n]. J. Pure Appl. Algebra 210(1), 141–146 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Adrien Dubouloz
    • 1
    Email author
  • Lucy Moser-Jauslin
    • 1
  • Pierre-Marie Poloni
    • 2
  1. 1.Institut de Mathématiques de Bourgogne, UMR 5584 du CNRSUniversité de BourgogneDijonFrance
  2. 2.Mathematisches InstitutUniversität BaselBaselSwitzerland

Personalised recommendations