Abstract
We explore an approach to the celebrated Jacobian Conjecture by means of identities of algebras, initiated by the brilliant deceased mathematician, Alexander Vladimirovich Yagzhev (1951–2001), whose works have only been partially published. This approach also indicates some very close connections between mathematical physics, universal algebra, and automorphisms of polynomial algebras.
Dedicated to the memory of A.V. Yagzhev
2010 Mathematics Subject Classification: Primary 13F20, 14E08, 14R15, 17A30, 17A40, 17A50; Secondary 13F25, 17A01, 17A05, 17A15, 17A65.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Algebraic geometers use the word variety, roughly speaking, for objects whose local structure is obtained from the solution of system of algebraic equations. In the framework of universal algebra, this notion is used for subcategories of algebras defined by a given set of identities. A deep analog of these notions is given in [12].
References
A. Abdesselam, The Jacobian Conjecture as a problem of Perturbative Quantum Field theory. Ann. Henri Poincare 4(2), 199–215 (2003)
S. Abhyankar, T. Moh, Embedding of the line in the plane. J. Reine Angew. Math. 276, 148–166 (1975)
S.A. Amitsur, Algebras over infinite fields. Proc. Am. Math. Soc. 7, 35–48 (1956)
S.A. Amitsur, A general theory of radicals: III. Applications. Am. J. Math. 75, 126–136 (1954)
H. Bass, E.H. Connell, D. Wright, The Jacobian Conjecture: reduction of degree and formal expansion of the inverse. Bull. Am. Math. Soc. (N.S.) 7(2), 287–330 (1982)
V.V. Bavula, The inversion formulae for automorphisms of Weil algebras and polynomial algebras. J. Pure Appl. Algebra 210, 147–159 (2007)
V.V. Bavula, The inversion formulae for automorphisms of polynomial algebras and rings of differential operators in prime characteristic. J. Pure Appl. Algebra 212(10), 2320–2337 (2008)
V.V. Bavula, An analogue of the conjecture of Dixmier is true for the algebra of polynomial integro-differential operators. J. Algebra 372, 237–250 (2012)
V.V. Bavula, Every monomorphism of the Lie algebra of unitriangular polynomial derivations is an authomorphism. C. R. Acad. Sci. Paris Ser. 1 350(11–12), 553–556 (2012)
V.V. Bavula, The JacobianConjecture2n implies the Dixmier Problem n . arXiv:math/0512250
A. Beauville, J.-L. Colliot-Thelene, J-J Sansuc, P. Swinnerton-Dyer, Varietes stablement rationnelles non rationnelles. Ann. Math. 121, 283–318 (1985)
A. Belov, Local finite basis property and local representability of varieties of associative rings. Izvestia Russ. Acad. Sci. 74(1), 3–134 (2010). English transl.: Izvestiya Math. 74, 1–126 (2010)
A. Belov, A. Berzins, R. Lipianskii, Automorphisms of the endomorphism group of the free associative algebra. Int. J. Algebra Comput. 17(5/6), 923–939 (2007)
A. Belov, M.L. Kontsevich, Jacobian and Dixmier Conjectures are stably equivalent. Moscow Math. J. 7(2), 209–218 (2007) (A special volume dedicated to the 60-th anniversary of A.G.Khovanskii)
A. Belov, M.L. Kontsevich, Automorphisms of Weyl algebras. Lett. Math. Phys. 74(3), 181–199 (2005) (A special volume dedicated to the memory of F.A. Berezin)
A. Belov, R. Lipyanskii, Automorphisms of the endomorphism group of the free associative-commutative algebra over an arbitrary field. J. Algebra 333, 40–54 (2011)
A. Belov, L. Makar-Limanov, J.T. Yu, On the generalised cancellation conjecture. J. Algebra 281, 161–166 (2004)
A. Belov, L.H. Rowen, U. Vishne, Structure of Zariski-closed algebras. Trans. Am. Math. Soc. 362, 4695–4734 (2012)
A. Belov, J.-T. Yu, On the lifting of the Nagata automorphism. Selecta Math. (N.S.) 17, 935–945 (2011)
A. Belov-Kanel, J.-T. Yu, Stable tameness of automorphisms of F〈x, y, z〉 fixing z. Selecta Math. (N.S.) 18, 799–802 (2012)
J. Berson, A. van den Essen, D. Wright, Stable tameness of two-dimensional polynomial automorphisms over a regular ring, 2007 (rev. 2010). Adv. Math. 230, 2176–2197 (2012)
J. Birman, An inverse function theorem for free groups. Proc. Am. Math. Soc. 41, 634–638 (1973)
P. Bonnet, S. Vénéreau, Relations between the leading terms of a polynomial automorphism. J. Algebra 322(2), 579–599 (2009)
P.M. Cohn, Free Rings and Their Relations, 2nd edn. (Academic, London, 1985)
A.J. Czerniakiewicz, Automorphisms of a free associative algebra of rank 2, II. Trans. Am. Math. Soc. 171, 309–315 (1972)
W. Danielewski, On the cancellation problem and automorphism groups of affine algebraic varieties, Warsaw. Preprint (1989)
W. Dicks, Automorphisms of the free algebra of rank two. Group actions on rings. (Brunswick, Maine, 1984). Contemp. Math. 43, 63–68 (1985)
W. Dicks, J. Levin, Jacobian conjecture for free associative algebras. Commun. Alg. 10(12), 1285–1306 (1982)
V. Drensky, J.-T. Yu, The strong Anick conjecture. Proc. Natl. Acad. Sci. USA 103, 4836–4840 (2006)
V. Drensky, J.-T. Yu, Coordinates and automorphisms of polynomial and free associative algebras of rank three. Front. Math. China 2(1), 13–46 (2007)
V. Drensky, J.-T. Yu, The strong Anick conjecture is true. J. Eur. Math. Soc. 9, 659–679 (2007)
V. Drensky, J.-T. Yu, A cancellation conjecture for free associative algebras. Proc. Am. Math. Soc. 136, 3391–3394 (2008)
L.M. Druźkowski, The Jacobian conjecture: symmetric reduction and solution in the symmetric cubic linear case. Ann. Polon. Math. 87, 83–92 (2005)
L.M. Druźkowski, New reduction in the Jacobian conjecture. Effective methods in algebraic and analytic geometry, 2000 (Krakw). Univ. Iagel. Acta Math. 39, 203–206 (2001)
A. Van den Essen, Polynomial Automorphisms and the Jacobian Conjecture. Progress in Mathematics, vol. 190 (Birkhauser, Basel, 2000), pp. xviii, 329
A. Van den Essen, The Amazing Image Conjecture. arXiv:1006.5801
A. Van den Essen, M. de Bondt, in Recent Progress on the Jacobian Conjecture. Proc. of the Int. Conf. Singularity Theory in honour of S. Lojawiewicz, Cracow, 22–26 March 2004. Ann. Polon. Math., vol. 87 (2005), pp. 1–11
A. Van den Essen, M. de Bondt, The Jacobian Conjecture for symmetric Druźkowski mappings. Ann. Polon. Math. 86(1), 43–46 (2005)
A. Van den Essen, D. Wright, W. Zhao, On the Image Conjecture. J. Algebra 340, 211—224 (2011)
R.H. Fox, Free differential calculus, I. Derivation in the free group ring. Ann. Math. 57(2), 547–560 (1953)
M.H. Gizatullin, Automorphisms of affine surfaces, I, II. Math. USSR-Izvestiya 11(1), 54–103 (1977)
G. Gorni, G. Zampieri, Yagzhev polynomial mappings: on the structure of the Taylor expansion of their local inverse. Polon. Math. 64, 285–290 (1996)
H.W.E. Jung, Uber ganze birationale Transformationen der Ebene. J. Reine Angew. Math. 184, 161–174 (1942)
S. Kaliman, M. Zaidenberg, Families of affine planes: the existence of a cylinder. Michigan Math. J. 49, 353–367 (2001)
E. Kuzmin, I.P. Shestakov, Non-associative structures (English). Algebra VI. Encycl. Math. Sci. 57, 197–280 (1995). Translation from Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. Fundam. Napravleniya 57, 179–266 (1990)
M. Karas’, Multidegrees of tame automorphisms of C n. Dissertationes Math. 477, 55 (2011)
A. Khoroshkin, D. Piontkovski, On generating series of finitely presented operads. Preprint. arXiv:1202.5170 (2012)
V.S. Kulikov, The Jacobian conjecture and nilpotent mappings, in Complex Analysis in Modern Mathematics (FAZIS, Moscow, 2001 in Russian), pp. 167–179. Eng. Trans. J. Math. Sci. 106, 3312–3319 (2001)
W. van der Kulk, On polynomial rings in two variables. Nieuw Arch. Wiskunde 1, 33–41 (1953)
S. Kuroda, Shestakov-Umirbaev reductions and Nagata’s conjecture on a polynomial automorphism. Tohoku Math. J. 62, 75–115 (2010)
Y.C. Li, J.T. Yu, Degree estimate for subalgebras. J. Algebra 362, 92–98 (2012)
L. Makar-Limanov, The automorphisms of the free algebra with two generators. Funkcional. Anal. i Priloen. 4(3), 107–108 (1970 in Russian)
L. Makar-Limanov, A new proof of the Abhyankar-Moh-Suzuki Theorem, 18 pp. arXiv:1212.0163
L. Makar-Limanov, J.-T. Yu, Degree estimate for subalgebras generated by two elements. J. Eur. Math. Soc. 10, 533–541 (2008)
M. Markl, S. Shnider, J. Stasheff, Operads in Algebra, Topology and Physics. Math. Surveys and Monographs, vol. 96 (AMS, Providence, 2002)
M. Miyanishi, T. Sugie, Affine surfaces containing cylinderlike open sets. J. Math. Kyoto Univ. 20, 11–42 (1980)
M. Nagata, On the Automorphism Group of k[x,y], Department of Mathematics, Kyoto University, Lectures in Mathematics, vol. 5 (Kinokuniya Book-Store Co., Ltd., Tokyo, 1972), pp. v, 53
J. Nielsen, Die Isomorphismen der allgemeinen, undendlichen Gruppen mit zwei Eerzeugenden. Math. Ann. 78, 385–397 (1918)
J. Nielsen, Die Isomorphismengruppe der freien Gruppen. Math. Ann. 91, 169–209 (1924)
A.Yu. Ol’shanskij, Groups of bounded period with subgroups of prime order. Algebra i Logika 21, 553–618 (1982). Translation in Algebra Log. 21, 369–418 (1983)
R. Peretz, Constructing Polynomial Mappings Using Non-commutative Algebras. In Aff. Algebr. Geometry. Contemporary Mathematics, vol. 369 (American Mathematical Society, Providence, 2005), pp. 197–232
D. Piontkovski, Operads versus Varieties: a dictionary of universal algebra. Preprint (2011)
D. Piontkovski, On Kurosh problem in varieties of algebras. Translated from Proceedings of Kurosh conference (Fund. Prikl. Matematika 14, 5, 171–184 (2008)). J. Math. Sci. 163(6), 743–750 (2009)
Yu.P. Razmyslov, Algebras satisfying identity relations of Capelli type. Izv. Akad. Nauk SSSR Ser. Mat. 45, 143–166, 240 (1981 in Russian)
Yu.P. Razmyslov, Identities of Algebras and Their Representations. Sovremennaya Algebra [Modern Algebra] (Nauka, Moscow 1989), p. 432. Translations of Mathematical Monographs, vol. 138 (American Mathematical Society, Providence, 1994), pp. xiv, 318
Yu.P. Razmyslov, K.A. Zubrilin, Nilpotency of obstacles for the representability of algebras that satisfy Capelli identities, and representations of finite type. Uspekhi Mat. Nauk 48, 171–172 (1993 in Russian); Translation in Russ. Math. Surv. 48, 183–184 (1993)
C. Reutenauer, Applications of a noncommutative Jacobian matrix. J. Pure Appl. Algebra 77, 634–638 (1992)
L.H. Rowen, Graduate algebra: Noncommutative view. Graduate Studies in Mathematics, vol. 91 (AMS, Providence, 2008)
A.H. Schofield, Representations of Rings Over Skew Fields. London Mathematical Society Lecture Note Series, vol. 92 (Cambridge University Press, Cambridge, 1985)
I.R. Shafarevich, On some infinite dimensional groups. Recondidi di Matematica 25, 208–212 (1966)
I.P. Shestakov, Finite-dimensional algebras with a nil basis. Algebra i Logika 10, 87–99 (1971 in Russian)
I.P. Shestakov, U.U. Umirbaev, Poisson brackets and two-generated subalgebras of rings of polynomials. J. Am. Math. Soc. 17(1), 181–196 (2004)
I.P. Shestakov, U.U. Umirbaev, The tame and the wild automorphisms of polynomial rings in three variables. J. Am. Math. Soc. 17(1), 197–227 (2004)
V. Shpilrain, On generators of L∕R 2 Lie algebras. Proc. Am. Math. Soc. 119, 1039–1043 (1993)
D. Singer, On Catalan trees and the Jacobian conjecture. Electron. J. Combin. 8(1), Research Paper 2, 35 (2001) (electronic)
V. Shpilrain, J.-T. Yu, Affine varieties with equivalent cylinders. J. Algebra 251(1), 295–307 (2002)
V. Shpilrain, J.-T. Yu, Factor algebras of free algebras: on a problem of G. Bergman. Bull. Lond. Math. Soc. 35, 706–710 (2003)
M. Suzuki, Propiétés topologiques des polynômes de deux variables complexes, et automorphismes algébraique de l’espace C 2. J. Math. Soc. Jpn. 26, 241–257 (1974)
Y. Tsuchimoto, Preliminaries on Dixmier conjecture. Mem. Fac. Sci. Kochi Univ. Ser. A Math. 24, 43–59 (2003)
Y. Tsuchimoto, Endomorphisms of Weyl algebra and p-curvatures. Osaka J. Math. 42(2), 435–452 (2005)
U.U. Umirbaev, On Jacobian matrices of Lie algebras, in 6th All-Union Conference on Varieties of Algebraic Systems, Magnitogorsk, 1990, pp. 32–33
U.U. Umirbaev, Shreer varieties of algebras. Algebra i Logika 33(3), 317–340, 343 (1994 in Russian). Translation in Algebra Log. 33, 180–193 (1994)
U.U. Umirbaev, Tame and Wild Automorphisms of Polynomial Algebras and Free Associative Algebras (Max-Planck-Institute für Mathematics, Bonn). Preprint MPIM 2004-108
U.U. Umirbaev, On an extension of automorphisms of polynomial rings. Sibirsk. Mat. Zh. 36, 911–916 (1995 in Russian). Translation in Siberian Math. J. 36, 787–791 (1995)
U.U. Umirbaev, The Anick automorphism of free associative algebras. J. Reine Angew. Math. 605, 165–178 (2007)
U.U. Umirbaev, Defining relations of the tame automorphism group of polynomial algebras in three variables. J. Reine Angew. Math. 600, 203–235 (2006)
U.U. Umirbaev, Defining relations for automorphism groups of free algebras. J. Algebra 314, 209–225 (2007)
U.U. Umirbaev, J.T. Yu, The strong Nagata conjecture. Proc. Natl. Acad. Sci. USA 101, 4352–4355 (2004)
A.G. Vitushkin, Computation of the Jacobian of a rational transformation of C 2 and some applications. Mat. Zametki 66(2), 308–312 (1999 in Russian). Transl. in Math. Notes 66(1–2), 245–249 (1999)
A.G. Vitushkin, A criterion for the representability of a chain of σ-processes by a composition of triangular chains. Mat. Zametki 65(5), 643–653 (1999 in Russian). Transl. in Math. Notes 65(5–6), 539–547 (1999)
A.G. Vitushkin, Description of the homology of a ramified covering of C 2. Mat. Zametki 64(6), 839–846 (1998 in Russian). Transl. in Math. Notes 64, 726–731 (1999)
J.H.M. Wedderburn, Note on algebras. Ann. Math. 38, 854–856 (1937)
D. Wright, The Jacobian Conjecture as a Problem in Combinatorics, in the monograph Affine Algebraic Geometry, in honor of Masayoshi Miyanishi,edited by Takayuki Hibi (Osaka University Press, 2007). ArXiv: math.Co/0511214 v2, 22 Mar 2006
D. Wright, The Jacobian Conjecture: ideal membership questions and recent advances. Affine algebraic geometry. Contemp. Math. 369, 261–276 (2005)
A.V. Yagzhev, The generators of the group of tame automorphisms of an algebra of polynomials. Sibirsk. Mat. Ž. 18(1), 222–225, 240 (1977 in Russian)
A.V. Yagzhev, On endomorphisms of free algebras. Sibirsk. Mat. Zh. 21(1), 181–192, 238 (1980 in Russian)
A.V. Yagzhev, On the algorithmic problem of recognition of automorphisms among the endomorphisms of free associate algebras of finite rank. Sibirsk. Mat. Zh. 21(1), 193–199, 238 (1980 in Russian)
A.V. Yagzhev, On a problem of Keller. Sibirsk. Mat. Zh. 21(5), 141–150, 191 (1980 in Russian)
A.V. Yagzhev, Finiteness of the set of conservative polynomials of a given degree. Mat. Zametki 41(2), 148–151, 285 (1987 in Russian)
A.V. Yagzhev, Nilpotency of extensions of an abelian group by an abelian group. Mat. Zametki 43(3), 424–427, 431 (1988 in Russian); translation in Math. Notes 43(3–4), 244–245 (1988)
A.V. Yagzhev, Locally nilpotent subgroups of the holomorph of an abelian group. Mat. Zametki 46(6), 118 (1989 in Russian)
A.V. Yagzhev, A sufficient condition for the algebraicity of an automorphism of a group. Algebra i Logika 28(1), 117–119, 124 (1989 in Russian). Translation in Algebra and Logic 28(1), 83–85 (1989)
A.V. Yagzhev, Invertibility of endomorphisms of free associative algebras. Mat. Zametki 49(4), 142–147, 160 (1991 in Russian). Translation in Math. Notes 49(3–4), 426–430 (1991)
A.V. Yagzhev, Engel algebras satisfying Capelli identities, in Proceedings of Shafarevich Seminar, Moscow, 2000, pp. 83–88 (in Russian)
A.V. Yagzhev, Endomorphisms of polynomial rings and free algebras of different varieties, in Proceedings of Shafarevich Seminar, Moscow, 2000, pp. 15–47 (in Russian)
A. Zaks, Dedekind subrings of K[x 1, …, x n ] are rings of polynomials. Israel J. Math. 9, 285–289 (1971)
E. Zelmanov, On the nilpotence of nilalgebras. Lect. Notes Math. 1352, 227–240 (1988)
W. Zhao, New Proofs for the Abhyankar-Gurjar Inversion Formula and the Equivalence of the Jacobian Conjecture and the Vanishing Conjecture. Proc. Am. Math. Soc. 139, 3141–3154 (2011)
W. Zhao, Mathieu subspaces of associative algebras. J. Algebra 350, 245–272 (2012). arXiv:1005.4260
K.A. Zhevlakov, A.M. Slin’ko, I.P. Shestakov, A.I. Shirshov, Nearly Associative Rings (Nauka, Moscow, 1978 in Russian)
K.A. Zubrilin, Algebras that satisfy the Capelli identities. Mat. Sb. 186(3), 53–64 (1995 in Russian). Translation in Sb. Math. 186(3), 359–370 (1995)
K.A. Zubrilin, On the class of nilpotence of obstruction for the representability of algebras satisfying Capelli identities. Fundam. Prikl. Mat. 1(2), 409–430 (1995 in Russian)
K.A. Zubrilin, On the Baer ideal in algebras that satisfy the Capelli identities. Mat. Sb. 189, 73–82 (1998 in Russian). Translation in Sb. Math. 189, 1809–1818 (1998)
Acknowledgements
The first and third authors are supported by the Israel Science Foundation grant No. 1207/12. The research of Jie-Tai Yu was partially supported by an RGC-GRF Grant.
Yagzhev was a doctoral student of the second author, L. Bokut.
We thank I.P. Shestakov for useful comments, and also thank the referees for many helpful suggestions in improving the exposition.
We are grateful to Yagzhev’s widow G.I. Yagzheva, and also to Jean-Yves Sharbonel, for providing some unpublished materials.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Belov, A., Bokut, L., Rowen, L., Yu, JT. (2014). The Jacobian Conjecture, Together with Specht and Burnside-Type Problems. In: Cheltsov, I., Ciliberto, C., Flenner, H., McKernan, J., Prokhorov, Y., Zaidenberg, M. (eds) Automorphisms in Birational and Affine Geometry. Springer Proceedings in Mathematics & Statistics, vol 79. Springer, Cham. https://doi.org/10.1007/978-3-319-05681-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-05681-4_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05680-7
Online ISBN: 978-3-319-05681-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)