The Jacobian Conjecture, Together with Specht and Burnside-Type Problems

  • Alexei Belov
  • Leonid Bokut
  • Louis Rowen
  • Jie-Tai Yu
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 79)

Abstract

We explore an approach to the celebrated Jacobian Conjecture by means of identities of algebras, initiated by the brilliant deceased mathematician, Alexander Vladimirovich Yagzhev (1951–2001), whose works have only been partially published. This approach also indicates some very close connections between mathematical physics, universal algebra, and automorphisms of polynomial algebras.

References

  1. 1.
    A. Abdesselam, The Jacobian Conjecture as a problem of Perturbative Quantum Field theory. Ann. Henri Poincare 4(2), 199–215 (2003)MATHMathSciNetGoogle Scholar
  2. 2.
    S. Abhyankar, T. Moh, Embedding of the line in the plane. J. Reine Angew. Math. 276, 148–166 (1975)MATHMathSciNetGoogle Scholar
  3. 3.
    S.A. Amitsur, Algebras over infinite fields. Proc. Am. Math. Soc. 7, 35–48 (1956)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    S.A. Amitsur, A general theory of radicals: III. Applications. Am. J. Math. 75, 126–136 (1954)MathSciNetGoogle Scholar
  5. 5.
    H. Bass, E.H. Connell, D. Wright, The Jacobian Conjecture: reduction of degree and formal expansion of the inverse. Bull. Am. Math. Soc. (N.S.) 7(2), 287–330 (1982)Google Scholar
  6. 6.
    V.V. Bavula, The inversion formulae for automorphisms of Weil algebras and polynomial algebras. J. Pure Appl. Algebra 210, 147–159 (2007)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    V.V. Bavula, The inversion formulae for automorphisms of polynomial algebras and rings of differential operators in prime characteristic. J. Pure Appl. Algebra 212(10), 2320–2337 (2008)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    V.V. Bavula, An analogue of the conjecture of Dixmier is true for the algebra of polynomial integro-differential operators. J. Algebra 372, 237–250 (2012)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    V.V. Bavula, Every monomorphism of the Lie algebra of unitriangular polynomial derivations is an authomorphism. C. R. Acad. Sci. Paris Ser. 1 350(11–12), 553–556 (2012)Google Scholar
  10. 10.
    V.V. Bavula, The JacobianConjecture2n implies the Dixmier Problemn. arXiv:math/0512250Google Scholar
  11. 11.
    A. Beauville, J.-L. Colliot-Thelene, J-J Sansuc, P. Swinnerton-Dyer, Varietes stablement rationnelles non rationnelles. Ann. Math. 121, 283–318 (1985)Google Scholar
  12. 12.
    A. Belov, Local finite basis property and local representability of varieties of associative rings. Izvestia Russ. Acad. Sci. 74(1), 3–134 (2010). English transl.: Izvestiya Math. 74, 1–126 (2010)Google Scholar
  13. 13.
    A. Belov, A. Berzins, R. Lipianskii, Automorphisms of the endomorphism group of the free associative algebra. Int. J. Algebra Comput. 17(5/6), 923–939 (2007)CrossRefMATHGoogle Scholar
  14. 14.
    A. Belov, M.L. Kontsevich, Jacobian and Dixmier Conjectures are stably equivalent. Moscow Math. J. 7(2), 209–218 (2007) (A special volume dedicated to the 60-th anniversary of A.G.Khovanskii)Google Scholar
  15. 15.
    A. Belov, M.L. Kontsevich, Automorphisms of Weyl algebras. Lett. Math. Phys. 74(3), 181–199 (2005) (A special volume dedicated to the memory of F.A. Berezin)Google Scholar
  16. 16.
    A. Belov, R. Lipyanskii, Automorphisms of the endomorphism group of the free associative-commutative algebra over an arbitrary field. J. Algebra 333, 40–54 (2011)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    A. Belov, L. Makar-Limanov, J.T. Yu, On the generalised cancellation conjecture. J. Algebra 281, 161–166 (2004)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    A. Belov, L.H. Rowen, U. Vishne, Structure of Zariski-closed algebras. Trans. Am. Math. Soc. 362, 4695–4734 (2012)CrossRefGoogle Scholar
  19. 19.
    A. Belov, J.-T. Yu, On the lifting of the Nagata automorphism. Selecta Math. (N.S.) 17, 935–945 (2011)Google Scholar
  20. 20.
    A. Belov-Kanel, J.-T. Yu, Stable tameness of automorphisms of Fx, y, z〉 fixing z. Selecta Math. (N.S.) 18, 799–802 (2012)Google Scholar
  21. 21.
    J. Berson, A. van den Essen, D. Wright, Stable tameness of two-dimensional polynomial automorphisms over a regular ring, 2007 (rev. 2010). Adv. Math. 230, 2176–2197 (2012)Google Scholar
  22. 22.
    J. Birman, An inverse function theorem for free groups. Proc. Am. Math. Soc. 41, 634–638 (1973)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    P. Bonnet, S. Vénéreau, Relations between the leading terms of a polynomial automorphism. J. Algebra 322(2), 579–599 (2009)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    P.M. Cohn, Free Rings and Their Relations, 2nd edn. (Academic, London, 1985)MATHGoogle Scholar
  25. 25.
    A.J. Czerniakiewicz, Automorphisms of a free associative algebra of rank 2, II. Trans. Am. Math. Soc. 171, 309–315 (1972)MATHMathSciNetGoogle Scholar
  26. 26.
    W. Danielewski, On the cancellation problem and automorphism groups of affine algebraic varieties, Warsaw. Preprint (1989)Google Scholar
  27. 27.
    W. Dicks, Automorphisms of the free algebra of rank two. Group actions on rings. (Brunswick, Maine, 1984). Contemp. Math. 43, 63–68 (1985)Google Scholar
  28. 28.
    W. Dicks, J. Levin, Jacobian conjecture for free associative algebras. Commun. Alg. 10(12), 1285–1306 (1982)CrossRefMATHGoogle Scholar
  29. 29.
    V. Drensky, J.-T. Yu, The strong Anick conjecture. Proc. Natl. Acad. Sci. USA 103, 4836–4840 (2006)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    V. Drensky, J.-T. Yu, Coordinates and automorphisms of polynomial and free associative algebras of rank three. Front. Math. China 2(1), 13–46 (2007)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    V. Drensky, J.-T. Yu, The strong Anick conjecture is true. J. Eur. Math. Soc. 9, 659–679 (2007)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    V. Drensky, J.-T. Yu, A cancellation conjecture for free associative algebras. Proc. Am. Math. Soc. 136, 3391–3394 (2008)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    L.M. Druźkowski, The Jacobian conjecture: symmetric reduction and solution in the symmetric cubic linear case. Ann. Polon. Math. 87, 83–92 (2005)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    L.M. Druźkowski, New reduction in the Jacobian conjecture. Effective methods in algebraic and analytic geometry, 2000 (Krakw). Univ. Iagel. Acta Math. 39, 203–206 (2001)Google Scholar
  35. 35.
    A. Van den Essen, Polynomial Automorphisms and the Jacobian Conjecture. Progress in Mathematics, vol. 190 (Birkhauser, Basel, 2000), pp. xviii, 329Google Scholar
  36. 36.
    A. Van den Essen, The Amazing Image Conjecture. arXiv:1006.5801Google Scholar
  37. 37.
    A. Van den Essen, M. de Bondt, in Recent Progress on the Jacobian Conjecture. Proc. of the Int. Conf. Singularity Theory in honour of S. Lojawiewicz, Cracow, 22–26 March 2004. Ann. Polon. Math., vol. 87 (2005), pp. 1–11Google Scholar
  38. 38.
    A. Van den Essen, M. de Bondt, The Jacobian Conjecture for symmetric Druźkowski mappings. Ann. Polon. Math. 86(1), 43–46 (2005)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    A. Van den Essen, D. Wright, W. Zhao, On the Image Conjecture. J. Algebra 340, 211—224 (2011)CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    R.H. Fox, Free differential calculus, I. Derivation in the free group ring. Ann. Math. 57(2), 547–560 (1953)Google Scholar
  41. 41.
    M.H. Gizatullin, Automorphisms of affine surfaces, I, II. Math. USSR-Izvestiya 11(1), 54–103 (1977)MathSciNetGoogle Scholar
  42. 42.
    G. Gorni, G. Zampieri, Yagzhev polynomial mappings: on the structure of the Taylor expansion of their local inverse. Polon. Math. 64, 285–290 (1996)MATHMathSciNetGoogle Scholar
  43. 43.
    H.W.E. Jung, Uber ganze birationale Transformationen der Ebene. J. Reine Angew. Math. 184, 161–174 (1942)MathSciNetGoogle Scholar
  44. 44.
    S. Kaliman, M. Zaidenberg, Families of affine planes: the existence of a cylinder. Michigan Math. J. 49, 353–367 (2001)CrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    E. Kuzmin, I.P. Shestakov, Non-associative structures (English). Algebra VI. Encycl. Math. Sci. 57, 197–280 (1995). Translation from Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. Fundam. Napravleniya 57, 179–266 (1990)Google Scholar
  46. 46.
    M. Karas’, Multidegrees of tame automorphisms of C n. Dissertationes Math. 477, 55 (2011)Google Scholar
  47. 47.
    A. Khoroshkin, D. Piontkovski, On generating series of finitely presented operads. Preprint. arXiv:1202.5170 (2012)Google Scholar
  48. 48.
    V.S. Kulikov, The Jacobian conjecture and nilpotent mappings, in Complex Analysis in Modern Mathematics (FAZIS, Moscow, 2001 in Russian), pp. 167–179. Eng. Trans. J. Math. Sci. 106, 3312–3319 (2001)Google Scholar
  49. 49.
    W. van der Kulk, On polynomial rings in two variables. Nieuw Arch. Wiskunde 1, 33–41 (1953)MATHMathSciNetGoogle Scholar
  50. 50.
    S. Kuroda, Shestakov-Umirbaev reductions and Nagata’s conjecture on a polynomial automorphism. Tohoku Math. J. 62, 75–115 (2010)CrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    Y.C. Li, J.T. Yu, Degree estimate for subalgebras. J. Algebra 362, 92–98 (2012)CrossRefMATHMathSciNetGoogle Scholar
  52. 52.
    L. Makar-Limanov, The automorphisms of the free algebra with two generators. Funkcional. Anal. i Priloen. 4(3), 107–108 (1970 in Russian)Google Scholar
  53. 53.
    L. Makar-Limanov, A new proof of the Abhyankar-Moh-Suzuki Theorem, 18 pp. arXiv:1212.0163Google Scholar
  54. 54.
    L. Makar-Limanov, J.-T. Yu, Degree estimate for subalgebras generated by two elements. J. Eur. Math. Soc. 10, 533–541 (2008)CrossRefMATHMathSciNetGoogle Scholar
  55. 55.
    M. Markl, S. Shnider, J. Stasheff, Operads in Algebra, Topology and Physics. Math. Surveys and Monographs, vol. 96 (AMS, Providence, 2002)Google Scholar
  56. 56.
    M. Miyanishi, T. Sugie, Affine surfaces containing cylinderlike open sets. J. Math. Kyoto Univ. 20, 11–42 (1980)MATHMathSciNetGoogle Scholar
  57. 57.
    M. Nagata, On the Automorphism Group of k[x,y], Department of Mathematics, Kyoto University, Lectures in Mathematics, vol. 5 (Kinokuniya Book-Store Co., Ltd., Tokyo, 1972), pp. v, 53Google Scholar
  58. 58.
    J. Nielsen, Die Isomorphismen der allgemeinen, undendlichen Gruppen mit zwei Eerzeugenden. Math. Ann. 78, 385–397 (1918)CrossRefGoogle Scholar
  59. 59.
    J. Nielsen, Die Isomorphismengruppe der freien Gruppen. Math. Ann. 91, 169–209 (1924)CrossRefMATHMathSciNetGoogle Scholar
  60. 60.
    A.Yu. Ol’shanskij, Groups of bounded period with subgroups of prime order. Algebra i Logika 21, 553–618 (1982). Translation in Algebra Log. 21, 369–418 (1983)Google Scholar
  61. 61.
    R. Peretz, Constructing Polynomial Mappings Using Non-commutative Algebras. In Aff. Algebr. Geometry. Contemporary Mathematics, vol. 369 (American Mathematical Society, Providence, 2005), pp. 197–232Google Scholar
  62. 62.
    D. Piontkovski, Operads versus Varieties: a dictionary of universal algebra. Preprint (2011)Google Scholar
  63. 63.
    D. Piontkovski, On Kurosh problem in varieties of algebras. Translated from Proceedings of Kurosh conference (Fund. Prikl. Matematika 14, 5, 171–184 (2008)). J. Math. Sci. 163(6), 743–750 (2009)Google Scholar
  64. 64.
    Yu.P. Razmyslov, Algebras satisfying identity relations of Capelli type. Izv. Akad. Nauk SSSR Ser. Mat. 45, 143–166, 240 (1981 in Russian)Google Scholar
  65. 65.
    Yu.P. Razmyslov, Identities of Algebras and Their Representations. Sovremennaya Algebra [Modern Algebra] (Nauka, Moscow 1989), p. 432. Translations of Mathematical Monographs, vol. 138 (American Mathematical Society, Providence, 1994), pp. xiv, 318Google Scholar
  66. 66.
    Yu.P. Razmyslov, K.A. Zubrilin, Nilpotency of obstacles for the representability of algebras that satisfy Capelli identities, and representations of finite type. Uspekhi Mat. Nauk 48, 171–172 (1993 in Russian); Translation in Russ. Math. Surv. 48, 183–184 (1993)Google Scholar
  67. 67.
    C. Reutenauer, Applications of a noncommutative Jacobian matrix. J. Pure Appl. Algebra 77, 634–638 (1992)CrossRefMathSciNetGoogle Scholar
  68. 68.
    L.H. Rowen, Graduate algebra: Noncommutative view. Graduate Studies in Mathematics, vol. 91 (AMS, Providence, 2008)Google Scholar
  69. 69.
    A.H. Schofield, Representations of Rings Over Skew Fields. London Mathematical Society Lecture Note Series, vol. 92 (Cambridge University Press, Cambridge, 1985)Google Scholar
  70. 70.
    I.R. Shafarevich, On some infinite dimensional groups. Recondidi di Matematica 25, 208–212 (1966)MathSciNetGoogle Scholar
  71. 71.
    I.P. Shestakov, Finite-dimensional algebras with a nil basis. Algebra i Logika 10, 87–99 (1971 in Russian)Google Scholar
  72. 72.
    I.P. Shestakov, U.U. Umirbaev, Poisson brackets and two-generated subalgebras of rings of polynomials. J. Am. Math. Soc. 17(1), 181–196 (2004)CrossRefMATHMathSciNetGoogle Scholar
  73. 73.
    I.P. Shestakov, U.U. Umirbaev, The tame and the wild automorphisms of polynomial rings in three variables. J. Am. Math. Soc. 17(1), 197–227 (2004)CrossRefMATHMathSciNetGoogle Scholar
  74. 74.
    V. Shpilrain, On generators of LR 2 Lie algebras. Proc. Am. Math. Soc. 119, 1039–1043 (1993)MATHMathSciNetGoogle Scholar
  75. 75.
    D. Singer, On Catalan trees and the Jacobian conjecture. Electron. J. Combin. 8(1), Research Paper 2, 35 (2001) (electronic)Google Scholar
  76. 76.
    V. Shpilrain, J.-T. Yu, Affine varieties with equivalent cylinders. J. Algebra 251(1), 295–307 (2002)CrossRefMATHMathSciNetGoogle Scholar
  77. 77.
    V. Shpilrain, J.-T. Yu, Factor algebras of free algebras: on a problem of G. Bergman. Bull. Lond. Math. Soc. 35, 706–710 (2003)CrossRefMATHMathSciNetGoogle Scholar
  78. 78.
    M. Suzuki, Propiétés topologiques des polynômes de deux variables complexes, et automorphismes algébraique de l’espace C 2. J. Math. Soc. Jpn. 26, 241–257 (1974)CrossRefMATHGoogle Scholar
  79. 79.
    Y. Tsuchimoto, Preliminaries on Dixmier conjecture. Mem. Fac. Sci. Kochi Univ. Ser. A Math. 24, 43–59 (2003)MATHMathSciNetGoogle Scholar
  80. 80.
    Y. Tsuchimoto, Endomorphisms of Weyl algebra and p-curvatures. Osaka J. Math. 42(2), 435–452 (2005)MATHMathSciNetGoogle Scholar
  81. 81.
    U.U. Umirbaev, On Jacobian matrices of Lie algebras, in 6th All-Union Conference on Varieties of Algebraic Systems, Magnitogorsk, 1990, pp. 32–33Google Scholar
  82. 82.
    U.U. Umirbaev, Shreer varieties of algebras. Algebra i Logika 33(3), 317–340, 343 (1994 in Russian). Translation in Algebra Log. 33, 180–193 (1994)Google Scholar
  83. 83.
    U.U. Umirbaev, Tame and Wild Automorphisms of Polynomial Algebras and Free Associative Algebras (Max-Planck-Institute für Mathematics, Bonn). Preprint MPIM 2004-108Google Scholar
  84. 84.
    U.U. Umirbaev, On an extension of automorphisms of polynomial rings. Sibirsk. Mat. Zh. 36, 911–916 (1995 in Russian). Translation in Siberian Math. J. 36, 787–791 (1995)Google Scholar
  85. 85.
    U.U. Umirbaev, The Anick automorphism of free associative algebras. J. Reine Angew. Math. 605, 165–178 (2007)MATHMathSciNetGoogle Scholar
  86. 86.
    U.U. Umirbaev, Defining relations of the tame automorphism group of polynomial algebras in three variables. J. Reine Angew. Math. 600, 203–235 (2006)MATHMathSciNetGoogle Scholar
  87. 87.
    U.U. Umirbaev, Defining relations for automorphism groups of free algebras. J. Algebra 314, 209–225 (2007)CrossRefMATHMathSciNetGoogle Scholar
  88. 88.
    U.U. Umirbaev, J.T. Yu, The strong Nagata conjecture. Proc. Natl. Acad. Sci. USA 101, 4352–4355 (2004)CrossRefMATHMathSciNetGoogle Scholar
  89. 89.
    A.G. Vitushkin, Computation of the Jacobian of a rational transformation of C 2 and some applications. Mat. Zametki 66(2), 308–312 (1999 in Russian). Transl. in Math. Notes 66(1–2), 245–249 (1999)Google Scholar
  90. 90.
    A.G. Vitushkin, A criterion for the representability of a chain of σ-processes by a composition of triangular chains. Mat. Zametki 65(5), 643–653 (1999 in Russian). Transl. in Math. Notes 65(5–6), 539–547 (1999)Google Scholar
  91. 91.
    A.G. Vitushkin, Description of the homology of a ramified covering of C 2. Mat. Zametki 64(6), 839–846 (1998 in Russian). Transl. in Math. Notes 64, 726–731 (1999)Google Scholar
  92. 92.
    J.H.M. Wedderburn, Note on algebras. Ann. Math. 38, 854–856 (1937)MathSciNetGoogle Scholar
  93. 93.
    D. Wright, The Jacobian Conjecture as a Problem in Combinatorics, in the monograph Affine Algebraic Geometry, in honor of Masayoshi Miyanishi,edited by Takayuki Hibi (Osaka University Press, 2007). ArXiv: math.Co/0511214 v2, 22 Mar 2006Google Scholar
  94. 94.
    D. Wright, The Jacobian Conjecture: ideal membership questions and recent advances. Affine algebraic geometry. Contemp. Math. 369, 261–276 (2005)CrossRefGoogle Scholar
  95. 95.
    A.V. Yagzhev, The generators of the group of tame automorphisms of an algebra of polynomials. Sibirsk. Mat. Ž. 18(1), 222–225, 240 (1977 in Russian)Google Scholar
  96. 96.
    A.V. Yagzhev, On endomorphisms of free algebras. Sibirsk. Mat. Zh. 21(1), 181–192, 238 (1980 in Russian)Google Scholar
  97. 97.
    A.V. Yagzhev, On the algorithmic problem of recognition of automorphisms among the endomorphisms of free associate algebras of finite rank. Sibirsk. Mat. Zh. 21(1), 193–199, 238 (1980 in Russian)Google Scholar
  98. 98.
    A.V. Yagzhev, On a problem of Keller. Sibirsk. Mat. Zh. 21(5), 141–150, 191 (1980 in Russian)Google Scholar
  99. 99.
    A.V. Yagzhev, Finiteness of the set of conservative polynomials of a given degree. Mat. Zametki 41(2), 148–151, 285 (1987 in Russian)Google Scholar
  100. 100.
    A.V. Yagzhev, Nilpotency of extensions of an abelian group by an abelian group. Mat. Zametki 43(3), 424–427, 431 (1988 in Russian); translation in Math. Notes 43(3–4), 244–245 (1988)Google Scholar
  101. 101.
    A.V. Yagzhev, Locally nilpotent subgroups of the holomorph of an abelian group. Mat. Zametki 46(6), 118 (1989 in Russian)Google Scholar
  102. 102.
    A.V. Yagzhev, A sufficient condition for the algebraicity of an automorphism of a group. Algebra i Logika 28(1), 117–119, 124 (1989 in Russian). Translation in Algebra and Logic 28(1), 83–85 (1989)Google Scholar
  103. 103.
    A.V. Yagzhev, Invertibility of endomorphisms of free associative algebras. Mat. Zametki 49(4), 142–147, 160 (1991 in Russian). Translation in Math. Notes 49(3–4), 426–430 (1991)Google Scholar
  104. 104.
    A.V. Yagzhev, Engel algebras satisfying Capelli identities, in Proceedings of Shafarevich Seminar, Moscow, 2000, pp. 83–88 (in Russian)Google Scholar
  105. 105.
    A.V. Yagzhev, Endomorphisms of polynomial rings and free algebras of different varieties, in Proceedings of Shafarevich Seminar, Moscow, 2000, pp. 15–47 (in Russian)Google Scholar
  106. 106.
    A. Zaks, Dedekind subrings of K[x 1, , x n] are rings of polynomials. Israel J. Math. 9, 285–289 (1971)Google Scholar
  107. 107.
    E. Zelmanov, On the nilpotence of nilalgebras. Lect. Notes Math. 1352, 227–240 (1988)CrossRefMathSciNetGoogle Scholar
  108. 108.
    W. Zhao, New Proofs for the Abhyankar-Gurjar Inversion Formula and the Equivalence of the Jacobian Conjecture and the Vanishing Conjecture. Proc. Am. Math. Soc. 139, 3141–3154 (2011)CrossRefMATHGoogle Scholar
  109. 109.
    W. Zhao, Mathieu subspaces of associative algebras. J. Algebra 350, 245–272 (2012). arXiv:1005.4260Google Scholar
  110. 110.
    K.A. Zhevlakov, A.M. Slin’ko, I.P. Shestakov, A.I. Shirshov, Nearly Associative Rings (Nauka, Moscow, 1978 in Russian)Google Scholar
  111. 111.
    K.A. Zubrilin, Algebras that satisfy the Capelli identities. Mat. Sb. 186(3), 53–64 (1995 in Russian). Translation in Sb. Math. 186(3), 359–370 (1995)Google Scholar
  112. 112.
    K.A. Zubrilin, On the class of nilpotence of obstruction for the representability of algebras satisfying Capelli identities. Fundam. Prikl. Mat. 1(2), 409–430 (1995 in Russian)Google Scholar
  113. 113.
    K.A. Zubrilin, On the Baer ideal in algebras that satisfy the Capelli identities. Mat. Sb. 189, 73–82 (1998 in Russian). Translation in Sb. Math. 189, 1809–1818 (1998)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alexei Belov
    • 1
  • Leonid Bokut
    • 2
    • 3
  • Louis Rowen
    • 1
  • Jie-Tai Yu
    • 4
  1. 1.Department of MathematicsBar-Ilan UniversityRamat GanIsrael
  2. 2.Sobolev Institute of MathematicsNovosibirskRussia
  3. 3.South China Normal UniversityGuangzhouChina
  4. 4.Department of MathematicsThe University of Hong KongHong Kong SARChina

Personalised recommendations