Skip to main content

Numerical Study on Isotachophoretic Separation of Ionic Samples in Microfluidics

  • Chapter
  • First Online:
Book cover Modelling and Simulation of Diffusive Processes

Abstract

A numerical study of analyte preconcentration by isotachophoresis is made. We have considered a 2-D model of isotachophoresis (ITP). Both peak and plateau mode of ITP are investigated in the present analysis. The Nernst–Planck equation is used for ion transport, electroneutrality condition for the electric field along with the Navier–Stokes equations for fluid flow. Our numerical algorithm is based on a finite volume method along with a higher-order upwind scheme. The present numerical method resolves efficiently the thin region (transition zone) between two adjacent analytes, in which either a step change (plateau mode) or a steep gradient (peak mode) of variables occur. Validity of the Kohlrausch’s regulating function (KRF) for the computed solution in peak-mode ITP is analyzed. The dynamics of ions in ITP is studied for a wide range of parameter values such as mobility, electric field, and amount of the sample. The dispersion of ITP due to nonuniform fluid convection is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li SFY (1992) Capillary electrophoresis: principles, practice, and applications. Elsevier, Amsterdam

    Google Scholar 

  2. Kuhn R, Hoffstetter-Kuhn S (1993) Capillary electrophoresis: principles and practice. Springer, Berlin

    Book  Google Scholar 

  3. Camilleri P (1993) Capillary electrophoresis: theory and practice. CRC, Boca Raton

    Google Scholar 

  4. Landers JP (1994) Handbook of capillary electrophoresis. CRC, Boca Raton

    Google Scholar 

  5. Chen L, Prest JE, Fielden PR, Goddard NJ, Manz A, Day PJR (2006) Miniaturized isotacophoresis analysis. Lab-on-a-Chip 6:474–487

    Article  Google Scholar 

  6. Gebauer P, Mala Z, Bovcek P (2011) Recent progress in analytical capillary isotachophoresis. Electrophoresis 32:83–89

    Article  Google Scholar 

  7. Khurana TK, Santiago JG (2008) Preconcentration, separation, and indirect detection of nonfluorescent analytes using fluorescent mobility markers. Anal Chem 80:279–286

    Article  Google Scholar 

  8. Garcia-Schwarz G, Bercovici M, Marshall LA, Santiago JG (2011) Sample dispersion in isotachophoresis. J Fluid Mech 679:455–475

    Article  MATH  Google Scholar 

  9. Kohlrausch F (1897) Uber Concentrations-Verschiebungen durch Electrolyse im Inneren von Losungen und Losungsgemis. Ann Physik 62:209–239

    Article  MATH  Google Scholar 

  10. Saville DA, Palusinski OA (1986) Theory of electrophoretic separations, Part I: Formulation of a mathematical model. AlChE J 32:207–214

    Article  Google Scholar 

  11. Su Y, Palusinski OA, Fife PC (1987) Isotachophoresis: analysis and computation of the structure of the ionic species interface. J Chromatogr 405:77–85

    Article  Google Scholar 

  12. Bercovici M, Lelea SK, Santiago JG (2009) Open source simulation tool for electrophoretic stacking, focusing, and separation. J Chromatogr A 1216:1008–1018

    Article  Google Scholar 

  13. Thormann W, Breadmore MC, Caslavska RA, Mosher RA (2010) Dynamic computer simulations of electrophoresis: A versatile research and teaching too. Electrophoresis 31:726–754

    Article  Google Scholar 

  14. Bhattacharyya S, Zheng Z, Conlisk AT (2005) Electroosmotic flow in two-dimensional charged micro- and nano-channels. J Fluid Mech 540:247–267

    Article  MATH  MathSciNet  Google Scholar 

  15. Baier T, Schonfeld F, Hardt S (2011) Analytical approximations to the flow field induced by electroosmosis during isotachophoretic transport through a channel. J Fluid Mech 682:101–119

    Article  MATH  Google Scholar 

  16. Shim J, Cho M, Dutta P (2011) A method to determine quasi-steady state in constant voltage mode isotachophoresis. Electrophoresis 32:988–995

    Article  Google Scholar 

  17. Saville DA (1990) The effects of electroosmosis on the structure of isotachophoresis boundaries. Electrophoresis 11:899–902

    Article  Google Scholar 

  18. Schonfeld F, Goet G, Baier T, Hardt S (2009) Transition zone dynamics in combined isotachophoretic and electro-osmotic transport. Phys Fluids 21:092002

    Article  Google Scholar 

  19. Bercovici M, Lelea SK, Santiago JG (2010) Compact adaptive-grid scheme for high numerical resolution simulations of isotachophoresis. J Chromatogr A 1217:588–599

    Article  Google Scholar 

  20. Bhattacharyya S, Gopmandal PP, Baier T, Hardt S (2013) Sample dispersion in isotachophoresis with Poiseuille counter flow. Phys Fluids 25:022001–022015

    Article  Google Scholar 

  21. Fletcher CAJ (1998) Computational methods for fluid dynamics, vol 2. Springer, Berlin

    Google Scholar 

  22. Jaluria Y (2003) Computational heat transfer. Taylor & Francis, New York

    Google Scholar 

  23. Leonard BP (1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput Meth Appl Mech Eng 19:59–98

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bhattacharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gopmandal, P., Bhattacharyya, S. (2014). Numerical Study on Isotachophoretic Separation of Ionic Samples in Microfluidics. In: Basu, S., Kumar, N. (eds) Modelling and Simulation of Diffusive Processes. Simulation Foundations, Methods and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-05657-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05657-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05656-2

  • Online ISBN: 978-3-319-05657-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics