Advertisement

Introduction to Takagi–Sugeno Fuzzy Systems

  • Abdellah BenzaouiaEmail author
  • Ahmed El Hajjaji
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 8)

Abstract

The T–S fuzzy approach has known a great interest of researchers many years ago [1, 2, 3, 4, 5]. The idea of this approach is to describe the comportment of a nonlinear system by a finite number of local linear subsystems inside different operating regions.

Keywords

Closed-loop Fuzzy System Static Output Feedback Fuzzy State Feedback Control Nonquadratic Lyapunov Functions Parallel Distributed Compensation (PDC) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Huang D, Nguang SK (2007) Static output feedback controller design for fuzzy systems: an LMI approach. Inf Sci 177:3005–3015CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Huai-Ning W (2008) An ILMI approach to robust \(H_2\) static output feedback fuzzy control for uncertain discrete-time nonlinear systems. Automatica 44:2333–2339CrossRefzbMATHGoogle Scholar
  3. 3.
    Kau S, Lee H, Yang CM, Lee CH, Hong L, Fang CH (2007) Robust \(H_{\infty }\) fuzzy static output feedback control of T-S fuzzy systems with parametric uncertainties. Fuzzy Sets Syst 158: 135–146Google Scholar
  4. 4.
    Lo JC, Lin ML (2003) Robust H\(_\infty \) nonlinear control via fuzzy static output feedback. IEEE Trans Circuits Syst I(50):1494–1502Google Scholar
  5. 5.
    Wang LX, Mendel JM (1992) Fuzzy basis functions, universal approximation and orthogonal least-squares. IEEE Trans Neural Netw 3:807–814CrossRefGoogle Scholar
  6. 6.
    Babuska R (1998) Fuzzy modeling for control. Kluwer Acadimec Publishers, BostonCrossRefGoogle Scholar
  7. 7.
    Gasso K (2000) Identification des Systèmes Dynamiques non Linéaires: Approche Multimodèles. PhD thesis of Lorraine University, FranceGoogle Scholar
  8. 8.
    Wu HC, Lu CN (1999) Automatic fuzzy model identification for short term load forecast. IEEE Gener Transm Distrib 146:477–482CrossRefGoogle Scholar
  9. 9.
    El Hajjaji A, Chadli M, Oudghiri M, Pages O (2006) Observer-based robust fuzzy control for vehicle lateral dynamics. In: IEEE American Control Conference, Minneapolis, pp 4664–4669, 14–16 June 2006Google Scholar
  10. 10.
    Guerra TM, Vermeirn L (2001) Control laws for Takagi-Sugeno fuzzy models. Fuzzy Sets Syst 33:95–108CrossRefGoogle Scholar
  11. 11.
    Tanaka K, Wang HO (2001) Fuzzy control systems design and analysis: a linear matrix inequality approach. Wiley, New YorkCrossRefGoogle Scholar
  12. 12.
    Wang HO, Tanaka K, Griffin MF (1996) An approach to fuzzy control of nonlinear systems: stability and design Issues. IEEE Trans Fuzzy Syst 4:14–23CrossRefGoogle Scholar
  13. 13.
    Takagi T, Sugeno M (1985) Fuzzy identification of systems and its application to modeling and control. IEEE Trans Syst Man Cybern 15:116–132CrossRefzbMATHGoogle Scholar
  14. 14.
    Buckley JJ (1992) Universal fuzzy controllers. Automatica 28:1245–1248CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Castro J (1995) Fuzzy logic controllers are universal approximator. IEEE Trans Syst Man Cybern-C 25:629–635CrossRefGoogle Scholar
  16. 16.
    Gasso K, Mourot G, Ragot J (2002) Structure identification of multiple models with output error local models. In: Proceeding of the 15th World Congress IFAC, Barcelona 22–26 July 2002Google Scholar
  17. 17.
    Teixeira MCM, Stanislaw H (1999) Stabilizing controller design for uncertain nonlinear systems using fuzzy models. IEEE Trans Fuzzy Syst 7:133–142CrossRefGoogle Scholar
  18. 18.
    Tanaka K, Ikeda T, Wang HO (1996) Robust Stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, \(H_{\infty }\) control theory and linear matrix inequalities. IEEE Trans Fuzzy Syst 4:1–13CrossRefGoogle Scholar
  19. 19.
    El Hajjaji A, Chadli M (2009) Commande Basée sur la Modélisation Floue de Type Takagi-Sugeno d’un Procédé Expérimental á Quatres Cuves. e-STA 6:46–51Google Scholar
  20. 20.
    Kim E, Lee H (2000) New approaches to relaxed quadratic stability condition of fuzzy control systems. IEEE Trans Fuzzy Syst 8:523–534Google Scholar
  21. 21.
    Liu X, Qingling Z (2003) New approaches to \(H_{\infty }\) controller designs based on fuzzy observers for T-S fuzzy systems via LMI. Automatica 39:1571–1582CrossRefzbMATHGoogle Scholar
  22. 22.
    Hindi H, Boyd S (1998) Analysis of Linear systems with saturating using convex optimization. In: Proceeding of 37th IEEE conference decision control, Florida-Tampa, pp 903–908, 16–18 Dec 1998Google Scholar
  23. 23.
    Johansson M, Rantzer A, Arzen K (1998) Piecewise quadratic stability for affine Sugeno systems. IEEE Int Conf Fuzzy Syst 1:55–60Google Scholar
  24. 24.
    Benzaouia A, Mehdi D, El Hajjaji A, Nachidi M (2007) Piecewise quadratic Lyapunov function for nonlinear systems with fuzzy static output feedback control. In: European control conference, Kos 2–5 July 2007Google Scholar
  25. 25.
    Guerra TM, Vermeiren L (2004) LMI-based relaxed non quadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno’s form. Automatica 40:823–829CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Chadli M, Maquin D, Ragot J (2002) An LMI formulation for output feedback stabilization in multiple model approach. In: 41th conference decision control, Las Vegas, pp 311–316, 10–13 Dec 2002Google Scholar
  27. 27.
    Tuan HD, Apkarian P, Narikiyo T, Yamamoto Y (2001) Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Trans Fuzzy Syst 9:324–332CrossRefGoogle Scholar
  28. 28.
    Cao YY, Lam J, Sun YX (1998) Static output feedback stabilization: an LMI Approach. Automatica 34:1641–1645Google Scholar
  29. 29.
    Cao YY, Lam J, Sun YX (1998) Analysis and design for a class of complex control systems partII: Fuzzy controller Design. Automatica 33:1029–1039Google Scholar
  30. 30.
    Kar IN (1999) Design of static output feedback controller for uncertain systems. Automatica 35:169–175CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Nachidi M, Benzaouia A, Tadeo F, Ait Rami M (2008) LMI-based approach for output feedback stabilization for discrete-time Takagi-Sugeno systems. IEEE Trans Fuzzy Syst 16:1188–1196Google Scholar
  32. 32.
    Chadli M, Maquin D, Ragot J (2002) Static Output feedback for Takagi-Sugeno systems: an LMI approach. In: Medical Conference of Control and Automation, Lisbon 9–13 July 2002Google Scholar
  33. 33.
    Chadli M, El hajjaji A (2005) Output Robust stabilization of uncertain Takagi-Sugeno model. In: 44th IEEE conference of decision control-European control Conference, Sevilla, pp 3393–3398, 12–15 Dec 2005Google Scholar
  34. 34.
    Chadli M, El Hajjaji A (2006) A observer-based robust fuzzy control of nonlinear systems with parametric uncertainties. Fuzzy Sets Syst 157:1276–1281CrossRefzbMATHGoogle Scholar
  35. 35.
    Patton RJ, Chen J, Lopez-Toribio C (1998) Fuzzy observer for nonlinear dynamic systems fault diagnosis. In: IEEE Conference of decision control, Tampa, pp 84–89, 16–18 Dec 1998Google Scholar
  36. 36.
    Shaocheng T, Yiqian T (2000) Analysis and design of fuzzy robust observer for uncertain nonlinear systems. In: IEEE international conference fuzzy systems, vol 2, pp 993–996, May 7–10 2000Google Scholar
  37. 37.
    Ma XZ, Sun ZQ, He YY (1998) Analysis and design of fuzzy controller and fuzzy observer. IEEE Trans Fuzzy Syst 6:41–51Google Scholar
  38. 38.
    Daraoui N, Pages O, EL Hajjaji A (2012) Robust Role and yaw control systems using fuzzy models of the vehicle dynamics. In: IEEE international conference of fuzzy systems (FUZZ-IEEE), Brisban, pp 1–6, 10–15 June 2012Google Scholar
  39. 39.
    Ghorbel H, El Hajjaji A, Souissi M, Chaabane M (2013) Improvement on observer-based \(H\infty \) tracking control for TS fuzzy systems with unmeasurable premise variables. In: 52nd IEEE conference on decision and control, Florence 10–13 Dec 2013Google Scholar
  40. 40.
    Ichalal D, Marx B, Ragot J, Maquin D (2012) Advances in observer design for Takagi–Sugeno systems with unmeasurable premise variables. In: 20th IEEE mediterranean conference control automation, Barcelona, pp 848–853, 3–6 July 2012Google Scholar
  41. 41.
    Lee KR, Jeung ET, Park HB (2001) Robust fuzzy \(H_{\infty }\) control for uncertain nonlinear systems via state feedback: an LMI approach. Fuzzy Sets Syst 120:123–134CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Oudghiri M, Chadli M, El Hajjaji A (2007) One-step procedure for robust output fuzzy control. In: 15th IEEE mediterranean conference of control automation, Athens, pp 1–6, 27–29 June 2007Google Scholar
  43. 43.
    El Messoussi W, Pages O, El Hajjaji A (2006) Observer-based robust control of uncertain fuzzy dynamic systems with pole placement constraints: an LMI approach. In: American control conference, Minneapolis, pp 2203–2208, 14–16 June 2006Google Scholar
  44. 44.
    Shaocheng T, Han-Hiong L (2002) Observer-based robust fuzzy control of nonlinear systems with parametric uncertainties. Fuzzy Sets Syst 131:165–184CrossRefzbMATHGoogle Scholar
  45. 45.
    Lin C, Wang Q, Lee T (2005) Improvement on observer-based \(H_{\infty }\) control for T-S fuzzy systems. Automatica 41:1651–1656CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Xiaodong L, Gingling Z (2003) New approaches to \(H_{\infty }\) controller design based on fuzzy observers for T-S fuzzy systems via LMI. Automatica 39:1571–1582CrossRefzbMATHGoogle Scholar
  47. 47.
    Lo J, Lin M (2004) Robust \(H\infty \) nonlinear modeling and control via uncertain fuzzy systems. Fuzzy Sets Syst 143:189–209CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Gopalsamy K (1992) Stability and oscillations in delay differential equations of population dynamics. Kluwer Academic Publishers, New YorkGoogle Scholar
  49. 49.
    Kolmanovskii VB, Myshkis AD (1992) Applied theory of functional differential equations. Kluwer Academic Publishers, New YorkGoogle Scholar
  50. 50.
    Kolmanovskii VB, Myshkis AD (1999) Introduction to the theory and applications of functional differential equations. Kluwer Academic Publishers, New YorkGoogle Scholar
  51. 51.
    Cao SG, Rees W, Feng G (2001) \(H_{\infty }\) control of uncertain dynamical fuzzy discrete-time systems. IEEE Trans Syst Man Cybern-B 31:802–812CrossRefGoogle Scholar
  52. 52.
    Chen B, Liu X (2005) Delay-dependent robust \(H_{\infty }\) control for T-S fuzzy systems with time delay. IEEE Trans Fuzzy Syst 13:238–249CrossRefGoogle Scholar
  53. 53.
    Guan XP, Chen CL (2004) Delay-dependent guaranteed cost control for T-S fuzzy systems with time delays. IEEE Trans Fuzzy Syst 12:236–249CrossRefzbMATHGoogle Scholar
  54. 54.
    Li C, Wang H, Liao X (2004) Delay-dependent robust stability of uncertain fuzzy systems with time-varying delays. Proc Inst Elect Eng Control Theor Appl 151:417–421CrossRefGoogle Scholar
  55. 55.
    Wu HN, Li HX (2007) New approach to delay-dependent stability analysis and stabilization for continuous-time fuzzy systems with time-varying delay. IEEE Trans Fuzzy Syst 15:482–493CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Cadi AyyadMarrakechMorocco
  2. 2.Laboratoire de Modélisation, Information et SystèmesUniversité de Picardie Jules VerneAmiensFrance

Personalised recommendations