Skip to main content

Thermal Conductivity

  • Chapter
  • First Online:
Nanofluidics

Abstract

The high attention nanofluids have received in the first decade of the twenty-first century and all the research on these suspensions are due to the experimentally observed very high values of their thermal conductivity. The high conductivity values may position some of the nanofluids as the heat transfer media of the future. Thermal conductivity is a transport property of materials, defined as the ratio of the energy flux through a surface and the local temperature gradient. High values of thermal conductivity imply higher rates of heat transfer and typically lower capital cost for the construction of a heat exchanger.

This chapter starts with an exposition of the analytical treatment of thermal conductivity and provides several useful results from statistical thermodynamics on the conductivity of fluids and solids. Analytical equations on the thermal conductivity of the suspensions are also presented based on (a) the effective medium theory, (b) the Brownian movement of nanoparticles, and (c) the interfacial layer between solids and fluid. The chapter examines critically the methods and instruments used for thermal conductivity measurements. The transient hot wire, the transient plate source, the 3ω method, steady conduction between plates or cylinders, and laser heating instruments are described in detail, and the methods used for data interpretation are explained.

A large part of the chapter is devoted to the presentation and analysis of the experimental data obtained for nanoparticles made of carbon nanotubes, metals, metal oxides, and other materials. The results of a large-scale, benchmark study on nanofluid conductivity are discussed critically. Several experimental correlations that emanate from the plethora of experimental data are presented. Finally, the mechanisms that have been promulgated for the explanation of the conductivity data are described—formation of an interfacial solid layer; electric surface charge and pH; Brownian movement of nanoparticles; transient contributions; particle shape, distribution, size, and formation of aggregates; preparation and surfactants; and thermal waves and phonons—in an informative and critical manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The interfacial Kapitza resistance to the heat flux is a way of modeling the accommodation coefficient, ζ, and the temperature slip at the particle–fluid interface in the set of equations (1.69) through (1.74).

  2. 2.

    The enhancement of the thermal conductivity is defined with respect to the conductivity of the base fluid at the same temperature as (k e − k f)/k f.

  3. 3.

    The data on concentration and particle size provided by the suppliers of the samples were confirmed independently by Laboratories at the Massachusetts Institute of Technology and the Illinois Institute of Technology.

  4. 4.

    It must be recalled, however, that thermophoresis is the averaged effect of the Brownian movement in the presence of a steady temperature gradient.

  5. 5.

    A similar analysis will lead to the paradox that turbulence does not matter in convective heat transport because the time-averaged velocity of the instantaneous turbulent fluctuation velocities is equal to zero.

References

  • Altan, C. L., Elkatmis, A., Yuksel, M., Asian, N., & Bucak, S. (2011). Enhancement of thermal conductivity upon application of magnetic field to Fe3O4 nanofluids. Journal of Applied Physics, 110, 093917-1–093917-7.

    Google Scholar 

  • Assael, M. J., Metaxa, I. N., Arvanitidis, J., Christofilos, D., & Lioutas, C. (2005). Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants. International Journal of Thermophysics, 26, 647–664.

    Google Scholar 

  • Babaei, H., Keblinski, P., & Khodadadi, J. M. (2013). A proof for insignificant effect of Brownian motion-induced micro-convection on thermal conductivity of nanofluids by utilizing molecular dynamics simulations. Journal of Applied Physics, 113, 084302.

    Google Scholar 

  • Basset, A. B. (1888). Treatise on hydrodynamics. London: Bell.

    MATH  Google Scholar 

  • Berber, S., Kwon, Y. K., & Tomanek, D. (1999). Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters, 84, 4613–4616.

    Google Scholar 

  • Bhattacharya, P., Saha, S. K., Yadav, A., Phelan, P. E., & Prasher, R. S. (2004). Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids. Journal of Applied Physics, 95, 6492.

    Google Scholar 

  • Biercuk, M., Llaguno, M., Radosavljevic, M., Hyun, J., Johnson, A., & Fischer, J. (2002). Carbon nanotube composites for thermal management. Applied Physics Letters, 80(15), 2767–2769.

    Google Scholar 

  • Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (1960). Transport phenomena. New York, NY: Wiley.

    Google Scholar 

  • Bonnecaze, R. T., & Brady, J. F. (1990). A method for determining the effective conductivity of dispersions of particles. Proceedings of the Royal Society A: Mathematical and Physical Sciences, 430(1879), 285–313.

    MATH  Google Scholar 

  • Bonnecaze, R. T., & Brady, J. F. (1991). The effective conductivity of random suspensions of spherical particles. Proceedings of the Royal Society A: Mathematical and Physical Sciences, 423(186), 445–465.

    Google Scholar 

  • Bossis, G., & Brady, J. F. (1987). Self-diffusion of Brownian particles in concentrated suspensions under shear. Journal of Chemical Physics, 87, 5437–5448.

    Google Scholar 

  • Boussinesq, V. J. (1885). Sur la resistance qu’ oppose un liquide indéfini en repos. Comptes Rendus de l’Académie des Sciences. Paris, 100, 935–937.

    MATH  Google Scholar 

  • Bridgman, P. W. (1923). Thermal conductivity of liquids under pressure. Proceedings of the American Academy of Arts and Sciences, 59, 141–169.

    Google Scholar 

  • Bruggeman, D. A. G. (1935). Berehnung vershidener physikalisher konstanten von heterogenen substanzen: I. Annalen der Physik, 24, 636–664.

    Google Scholar 

  • Brunn, P. O. (1982). Heat or mass transfer from single spheres in a low Reynolds number flow. International Journal of Engineering Science, 20, 817–822.

    MATH  MathSciNet  Google Scholar 

  • Buongiorno, J. D., Venerus, C., Prabhat, N., McKrell, T., Townsend, J., Christianson, R., et al. (2009). A benchmark study on the thermal conductivity of nanofluids. Journal of Applied Physics, 106, 094312.

    Google Scholar 

  • Cahill, D. G. (1990). Thermal conductivity measurement from 30 to 700 K: The 3ω method . Review of Scientific Instruments, 61, 802–808.

    Google Scholar 

  • Carslaw, H. S., & Jaeger, J. C. (1947). Conduction of heat in solids. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Catteneo, C. (1958). Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantaneé. Comptes Rendus. Paris, 247, 431–433.

    Google Scholar 

  • Chang, H., Jwo, C., Fan, P., & Pai, S. (2007). Process optimization and material properties for nanofluid manufacturing. International Journal of Advanced ManufacturingTechnology, 34(3), 300–306.

    Google Scholar 

  • Cherkasova, A. S., & Shan, J. W. (2008). Particle aspect-ratio effects on the thermal conductivity of micro- and nanoparticle suspensions. Journal of Heat Transfer, 130, 082406-1–082406-7.

    Google Scholar 

  • Cherkasova, A. S., & Shan, J. W. (2010). Particle aspect-ratio and agglomeration-state effects on the effective thermal conductivity of aqueous suspensions of multiwalled carbon nanotubes. Journal of Heat Transfer, 132, 082402-1–082402-11.

    Google Scholar 

  • Choi, E. S., Brooks, J. S., Eaton, D. L., Al-Haik, M. S., Hussaini, M. Y., Garmestani, H., et al. (2003). Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. Journal of Applied Physics, 94(9), 6034–6039.

    Google Scholar 

  • Choi, C. H., Ulmanella, U., & Kim, J. (2006). Effective slip and friction reduction in nanograted superhydrophobic microchannels. Physics of Fluids, 18, 087105-1–087105-8.

    Google Scholar 

  • Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., & Grulke, E. A. (2001). Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters, 79, 2252–2254.

    Google Scholar 

  • Chon, C. H., & Kihm, K. D. (2005). Thermal conductivity enhancement of nanofluids by Brownian motion. Journal of Heat Transfer, 127, 810–816.

    Google Scholar 

  • Chon, C. H., Kihm, K. D., Lee, S. P., & Choi, S. U. S. (2005). Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Applied Physics Letters, 87, 153107.

    Google Scholar 

  • Chopkar, M., Das, P. K., & Manna, I. (2006). Synthesis and characterization of nanofluid for advanced heat transfer applications. Scripta Materialia, 55, 549–552.

    Google Scholar 

  • Chopkar, M., Sudarshan, S., Das, P. K., & Manna, I. (2008). Effect of particle size on thermal conductivity of nanofluids. Metallurgical and Materials Transactions A, 39(7), 1535–1542.

    Google Scholar 

  • Dansinger, W. J. (1963). Heat transfer to fluidized gas-solids mixtures in vertical transport. Industrial and Engineering Chemistry, 2–4, 269–276.

    Google Scholar 

  • Das, S. K., Nandy, P., Thiesen, P., & Roetzel, W. (2003). Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer, 125, 567–575.

    Google Scholar 

  • De Groot, J. J., Kestin, J., & Sookiazian, H. (1974). An instrument to measure the thermal conductivity of gases. Physica, 75, 454–482.

    Google Scholar 

  • Din, X. D., & Michaelides, E. E. (1998). Transport processes of water and protons through micropores. AIChE Journal, 44, 35–47.

    Google Scholar 

  • Ding, Y., Alias, H., Wen, D., & Williams, R. A. (2006). Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). International Journal of Heat and Mass Transfer, 49, 240–250.

    Google Scholar 

  • Domingues, G., Volz, S., Joulain, K., & Greffet, J. J. (2005). Heat transfer between two nanoparticles through near field interaction. Physical Review Letters, 94, 085901-1–085901-4.

    Google Scholar 

  • Duan, Z., & Muzychka, Y. S. (2008). Slip flow heat transfer in annular microchannels with constant heat flux. Journal of Heat Transfer, 130, 09240-1–09240-8.

    Google Scholar 

  • Duan, Z., & Muzychka, Y. S. (2010). Effects of axial corrugated roughness on low Reynolds number slip flow and continuum flow in microtubes. Journal of Heat Transfer, 132, 041001-1–041001-9.

    Google Scholar 

  • Eapen, J., Li, J., & Yip, S. (2007). Mechanism of thermal transport in dilute nanocolloids. Physical Reviews Letters, 98, 028302.

    Google Scholar 

  • Eapen, J., Rusconi, R., Piazza, R., & Yip, S. (2010). The classical nature of thermal conduction in nanofluids. Journal of Heat Transfer, 132, 102402-1–102402-14.

    Google Scholar 

  • Eastman, J. A., Choi, S. U. S., Li, S., Thompson, L. J., & Lee, S. (1996) Enhanced thermal conductivity through the development of nanofluids. In 1996 Fall meeting of the Materials Research Society (MRS), Boston, USA.

    Google Scholar 

  • Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., & Thompson, L. J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78(6), 718–720.

    Google Scholar 

  • Evans, W., Fish, J., & Keblinski, P. (2006). Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Applied Physics Letters, 88, 093116.

    Google Scholar 

  • Fan, J., & Wang, L. (2011a). Review of heat conduction in nanofluids. Journal of Heat Transfer, 133, 040801-1–040801-14.

    Google Scholar 

  • Fan, J., & Wang, L. (2011b). Heat conduction in nanofluids: Structure-property correlation. International Journal of Heat and Mass Transfer, 54, 4349–4359.

    MATH  MathSciNet  Google Scholar 

  • Fantoni, R., Giacometti, A., Sciortino, F., & Pastore, G. (2010). Cluster theory of Janus particles. The Royal Society of Chemistry, 7, 2419–2427. Soft Matter.

    Google Scholar 

  • Farbar, L., & Depew, C. A. (1963). Heat transfer effects to gas-solids mixtures in a circular tube. Industrial and Engineering Chemistry Fundamentals, 2, 130–135.

    Google Scholar 

  • Feng, Z. G., & Michaelides, E. E. (1997). Transient heat and mass transfer from a spheroid. AIChE Journal, 43, 609–616.

    Google Scholar 

  • Feng, Z. G., & Michaelides, E. E. (2012). Heat transfer from a nano-sphere with temperature and velocity discontinuities at the interface. International Journal of Heat and Mass Transfer, 55, 6491–6498.

    Google Scholar 

  • Feng, Z. G., Michaelides, E. E., & Mao, S. L. (2012). On the drag force of a viscous sphere with interfacial slip at small but finite Reynolds numbers. Fluid Dynamics Research, 44, 025502.

    MathSciNet  Google Scholar 

  • Fricke, H. (1924). A mathematical treatment of the electric conductivity and capacity of disperse systems I. The electric conductivity of a suspension of homogeneous spheroids . Physical Review, 24(5), 575–587.

    Google Scholar 

  • Fujita, M., & Yamaguchi, Y. (2007). Multiscale simulation method for self-organization of nanoparticles in dense suspension. Journal of Computational Physics, 223, 108–120.

    MATH  MathSciNet  Google Scholar 

  • Gao, J. W., Zheng, R., Ohtani, H., Zhu, D. S., & Chen, G. (2009). Experimental investigation of heat conduction in nanofluids. Clue on clustering. Nano Letters, 9, 4128–4132.

    Google Scholar 

  • Gay, M., & Michaelides, E. E. (2003). Effect of the history term on the transient energy equation for a sphere. International Journal of Heat and Mass Transfer, 46, 1575–1586.

    MATH  Google Scholar 

  • Gerardi, C., Cory, D., Buongiorno, J., Hu, L. W., & McKrell, T. (2009). Nuclear magnetic resonance-based study of ordered layering on the surface of alumina nanoparticles in water. Applied Physics Letters, 95, 253104.

    Google Scholar 

  • Ghadimi, A., Saidur, R., & Metselaar, H. S. C. (2011). A review of nanofluid stability properties and characterization in stationary conditions. International Journal of Heat and Mass Transfer, 54, 4051–4068.

    Google Scholar 

  • Gupta, S. S., Siva, V. M., Krishnan, S., Sreeprasad, T. S., Singh, P. K., Pradeep, T., et al. (2011). Thermal conductivity enhancement of nanofluids containing graphene nanosheets. Journal of Applied Physics, 110, 084302-1–084302-6.

    Google Scholar 

  • Hamilton, R. L., & Crosser, O. K. (1962). Thermal conductivity of heterogeneous component systems. Industrial and Engineering Chemistry Fundamentals, 1, 187–191.

    Google Scholar 

  • Han, K., Lee, W. H., Kleinstreuer, C., & Koo, J. (2013). Critical invalidation of temperature dependence of nanofluid thermal conductivity enhancement. Journal of Heat Transfer, 135, 051601.

    Google Scholar 

  • Healy, J. J., de Groot, J., & Kestin, J. (1976). The theory of the transient hot-wire method for measuring thermal conductivity. Physica B, 82(2), 392–408.

    Google Scholar 

  • Holman, J. P. (1984). Experimental methods for engineers (4th ed.). New York, NY: McGraw-Hill.

    Google Scholar 

  • Hone, J., Whitney, M., Pskoti, C., & Zettl, A. (1999). Thermal conductivity of single-walled carbon nanotubes. Physical Review B, 59, R2514.

    Google Scholar 

  • Hong, S. W., Kang, Y. T., Kleinstreuer, C., & Koo, J. (2011). Impact analysis of natural convection on thermal conductivity measurements of nanofluids using the transient hot-wire method. International Journal of Heat and Mass Transfer, 54, 3448–3456.

    MATH  Google Scholar 

  • Hong, J., & Kim, D. (2012). Effects of aggregation on the thermal conductivity of alumina/water nanofluids. Thermochimica Acta, 542, 28–32.

    Google Scholar 

  • Hong, T. K., Yang, H. S., & Choi, C. J. (2005). Study of enhanced thermal conductivity of Fe nanofluids. Journal of Applied Physics, 97, 064301.

    Google Scholar 

  • Hwang, Y., Park, H. S., Lee, J. K., & Jung, W. H. (2006). Thermal conductivity and lubrication characteristics of nanofluids. Current Applied Physics, 6(Suppl. 1), e67–e71.

    Google Scholar 

  • Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56–57.

    Google Scholar 

  • Incropera, F. P., & DeWitt, D. P. (2000). Fundamentals of heat and mass transfer (4th ed.). New York, NY: Wiley.

    Google Scholar 

  • Jang, S. P., & Choi, S. U. S. (2004). Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Applied Physics Letters, 84, 4316–4318.

    Google Scholar 

  • Jeans, J. J., Sir. (1925). The dynamical theory of gases (4th ed. reprint). New York, NY: Dover Publications, 1954.

    Google Scholar 

  • Jiji, L. (2008). Effect of rarefaction, dissipation, and accommodation coefficients on heat transfer in microcylindrical Couette flow. Journal of Heat Transfer, 130, 042404-1–042404-8.

    Google Scholar 

  • Jung, J. Y., & Yoo, J. Y. (2009). Thermal conductivity enhancement of nanofluids in conjunction with electrical double layer (EDL). International Journal of Heat and Mass Transfer, 52, 525–528.

    Google Scholar 

  • Kakaç, S., & Pramuanjaroenkij, A. (2009). Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer, 52, 3187–3196.

    MATH  Google Scholar 

  • Keblinski, P., Phillpot, S. R., Choi, S. U. S., & Eastman, J. A. (2002). Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer, 45, 855–863.

    MATH  Google Scholar 

  • Kestin, J., & Wakeham, W. A. (1978). A contribution to the theory of the transient hot-wire technique for thermal conductivity measurements. Physica, 92A, 102–106.

    Google Scholar 

  • Khanafer, K., & Vafai, K. (2011). A critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat and Mass Transfer, 54, 4410–4428.

    MATH  Google Scholar 

  • Kihm, K. D., Chon, C. H., Lee, J. S., & Choi, S. U. S. (2011). A new heat propagation velocity prevails over Brownian particle velocities in determining the thermal conductivities of nanofluids. Nanoscale Research Letters, 6, 316–319.

    Google Scholar 

  • Komati, S., & Suresh, A. K. (2009). Anomalous enhancement of interphase transport rates by nanoparticles: Effect of magnetic iron oxide on gas-liquid mass transfer. Industrial and Engineering Chemistry Research, 49(1), 390–405.

    Google Scholar 

  • Kondaraju, S., Jin, E. K., & Lee, J. S. (2010). Direct numerical simulation of thermal conductivity of nanofluids: The effect of temperature two-way coupling and coagulation of particles. International Journal of Heat and Mass Transfer, 53, 862–869.

    MATH  Google Scholar 

  • Koo, J., & Kleinstreuer, C. (2004). A new thermal conductivity model for nanofluids. Journal of Nanoparticle Research, 6, 577–588.

    Google Scholar 

  • Koo, J., & Kleinstreuer, C. (2005a). Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. International Communications in Heat and Mass Transfer, 32, 1111–1118.

    Google Scholar 

  • Koo, J., & Kleinstreuer, C. (2005b). Laminar nanofluid flow in microheat sinks. International Journal of Heat and Mass Transfer, 48, 2652–2661.

    MATH  Google Scholar 

  • Krishnamurthy, S., Bhattacharya, P., Phelan, P. E., & Prasher, R. S. (2006). Enhanced mass transport in nanofluids. Nano Letters, 6(3), 419–423.

    Google Scholar 

  • Kumar, D. H., Patel, H. E., Kumar, V. R. R., Sundararajan, T., Pradeep, T., & Das, S. K. (2004). Model for heat conduction in nanofluids. Physical Review Letters, 93, 144301-1–144301-4.

    Google Scholar 

  • Lance, M., & Bataille, J. (1991). Turbulence in the liquid phase of a uniform bubbly air-water flow. Journal of Fluid Mechanics, 222, 95–118.

    Google Scholar 

  • Lee, S., Choi, S. U. S., Li, S., & Eastman, J. A. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121, 280–289.

    Google Scholar 

  • Lee, D., Kim, J. W., & Kim, B. G. (2006). A new parameter to control heat transport in nanofluids: Surface charge state of the particle in suspension. The Journal of Physical Chemistry. B, 110, 4323–4328.

    Google Scholar 

  • Lee, J. F., Sears, F. W., & Turcotte, D. L. (1963). Statistical thermodynamics. Reading, MA: Addison Wesley.

    Google Scholar 

  • Li, C. H., & Peterson, G. P. (2006). Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). Journal of Applied Physics, 99, 084314.

    Google Scholar 

  • Li, C. H., & Peterson, G. P. (2007). The effect of particle size on the effective thermal conductivity of Al2O3–water nanofluids. Journal of Applied Physics, 101, 044312-1–044312-5.

    Google Scholar 

  • Li, C. H., Xiang, P., & Peterson, G. P. (2012). Dual role of nanoparticles in the thermal conductivity enhancement of nanoparticle suspensions. Journal of Nanofluids, 2, 20–24.

    Google Scholar 

  • Li, X. F., Zhu, D. S., Wang, X. J., Wang, N., Gao, J. W., & Li, H. (2008). Thermal conductivity enhancement dependent pH and chemical surfactant for Cu–H2O nanofluids. Thermochimica Acta, 469(1–2), 98–103.

    Google Scholar 

  • Liu, M. S., Lin, C. C., Huang, I. T., & Wang, C. C. (2006a). Enhancement of thermal conductivity with CuO for nanofluids. Chemical Engineering and Technology, 29, 72–77.

    Google Scholar 

  • Liu, M. S., Lin, M. C. C., Tsai, C. Y., & Wang, C. C. (2006b). Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. International Journal of Heat and Mass Transfer, 49, 3028–3033.

    Google Scholar 

  • Llaguno, M., Hone, J., Johnson, A., & Fischer, J. (2001). Thermal conductivity of single-wall carbon nanotubes: Diameter and annealing dependence. In H. Kuzmany, J. Fink, M. Mehring, & S. Roth (Eds.), AIP Conference Proceedings (Vol. 591). New York, NY: Woodbury.

    Google Scholar 

  • Lohse, D., Luther, S., Rensen, J., van den Berg, T. H., Mazzitelli, I., & Toschi, F. (2004). Turbulent bubbly flow. Proceedings of the 5th International Conference on Multiphase Flow, Yokohama, Japan.

    Google Scholar 

  • Mahbubul, I. M., Saidur, R., & Amalina, M. A. (2012). Latest developments on the viscosity of nanofluids. International Journal of Heat and Mass Transfer, 55, 874–885.

    Google Scholar 

  • Masuda, H., Ebata, A., Teramae, K., & Hishinuma, N. (1993). Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei (Japan), 7(4), 227–233.

    Google Scholar 

  • Maxey, M. R., & Riley, J. J. (1983). Equation of motion of a small rigid sphere in a non-uniform flow. Physics of Fluids, 26, 883–889.

    MATH  Google Scholar 

  • Maxwell, J. C. (1881). A treatise on electricity and magnetism (2nd ed.). Oxford: Clarendon.

    Google Scholar 

  • Michaelides, E. E. (1986). Heat transfer in particulate flows. International Journal of Heat and Mass Transfer, 29(2), 265–273.

    Google Scholar 

  • Michaelides, E. E. (2003). Hydrodynamic force and heat/mass transfer from particles, bubbles and drops—The Freeman Scholar Lecture. Journal of Fluids Engineering, 125, 209–238.

    Google Scholar 

  • Michaelides, E. E. (2006). Particles, bubbles and drops—Their motion, heat and mass transfer. Hackensack, NJ: World Scientific Publishing.

    Google Scholar 

  • Michaelides, E. E. (2013). Heat and mass transfer in particulate suspensions. New York, NY: Springer.

    Google Scholar 

  • Michaelides, E. E., & Feng, Z. G. (1994). Heat transfer from a rigid sphere in a non-uniform flow and temperature field. International Journal of Heat and Mass Transfer, 37, 2069–2076.

    MATH  Google Scholar 

  • Murshed, S. M. S., Leong, K. C., & Yang, C. (2005). Enhanced thermal conductivity of TiO2-water based nanofluids. International Journal of Thermal Sciences, 44(4), 367–373.

    Google Scholar 

  • Nagasaka, Y., & Nagashima, A. (1981). Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method. Journal of Physics E: Scientific Instruments, 14, 1435–1440.

    Google Scholar 

  • Nan, C. W., Birringer, R., Clarke, D. R., & Gleiter, H. (1997). Effective thermal conductivity of particulate composites with interfacial thermal resistance. Journal of Applied Physics, 81, 6692–6699.

    Google Scholar 

  • Nan, C. W., Shi, Z., & Lin, Y. (2003). A simple model for thermal conductivity of carbon nanotube-based composites. Chemical Physics Letters, 375, 666–669.

    Google Scholar 

  • Nie, C., Marlow, W. H., & Hassan, Y. A. (2008). Discussion of proposed mechanisms of thermal conductivity enhancement in nanofluids. International Journal of Heat and Mass Transfer, 51, 1342–1348.

    MATH  Google Scholar 

  • Oh, D. W., Jainb, A., Eaton, J. K., Goodsonc, K. E., & Lee, J. S. (2008). Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method . International Journal of Heat and Fluid Flow, 29, 1456–1461.

    Google Scholar 

  • Ozisik, M. N. (1980). Heat conduction. New York, NY: Wiley.

    Google Scholar 

  • Pak, B. C., & Cho, Y. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer, 11, 151–170.

    Google Scholar 

  • Patel, H. E., Das, S. K., Sundararagan, T., Nair, A. S., George, B., & Pradeep, T. (2003). Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects. Applied Physics Letters, 83, 2931–2933.

    Google Scholar 

  • Paul, G., Chopkar, M., Manna, I., & Das, P. K. (2010). Techniques for measuring the thermal conductivity of nanofluids: A review. Renewable and Sustainable Energy Reviews, 14(7), 1913–1924.

    Google Scholar 

  • Pfeffer, R., Rosetti, S., & Licleinm, S. (1966). Analysis and correlation of heat transfer coefficient and friction factor data for dilute gas-solids suspensions. NASA report TN D-3603.

    Google Scholar 

  • Philip, J., Laskar, J. M., & Raj, B. (2008a). Magnetic field induced extinction of light in a suspension of Fe3O4 nanoparticles. Applied Physics Letters, 92, 22191.

    Google Scholar 

  • Philip, J., Sharma, P. D., & Raj, B. (2008b). Evidence for enhanced thermal conduction through percolating structures in nanofluids. Nanotechnology, 19, 305706.

    Google Scholar 

  • Poisson, S. A. (1831). Memoire sur les mouvements simultanes d’ un pendule et de l’ air environment. Mémoire de l’Académie des Sciences, Paris, 9, 521–523.

    Google Scholar 

  • Prasher, R., Bhattacharya, P., & Phelan, P. E. (2005). Thermal conductivity of nanoscale colloidal solutions (nanofluids). Physical Review Letters, 94(2), 025901.

    Google Scholar 

  • Prasher, R. S., Bhattacharya, P., & Phelan, P. E. (2006a). Brownian motion-based convective-conductive model for the effective thermal conductivity of nanofluids. Journal of Heat Transfer, 128, 588–595.

    Google Scholar 

  • Prasher, R., Evans, W., Meaking, P., Fish, J., Phelan, P., & Keblinski, P. (2006b). Effects of aggregation on thermal conduction in colloidal nanofluids. Applied Physics Letters, 89, 143119.

    Google Scholar 

  • Putnam, S. A., Cahill, D. G., Braun, P. V., Ge, Z., & Shimmin, R. G. (2006). Thermal conductivity of nanoparticle suspensions. Journal of Applied Physics, 99(8), 084308.

    Google Scholar 

  • Ruan, B., & Jacobi, A. M. (2012). Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions. Nanoscale Research Letters. doi:10.1186/1556-276X-7-127.

    Google Scholar 

  • Sarkar, S., & Selvam, R. P. (2007). Molecular dynamics simulations of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids. Journal of Applied Physics, 102, 74302.

    Google Scholar 

  • Sergis, A., & Hardalupas, Y. (2011). Anomalous heat transfer modes of nanofluids: A review based on statistical analysis. Nanoscale Research Letters, 6, 391.

    Google Scholar 

  • Shalkevich, N., Shalkevich, A., & Burgi, T. (2010). Thermal conductivity of concentrated colloids in different states. Journal of Physical Chemistry C, 114(21), 9568–9572. doi:10.1021/jp910722j.

    Google Scholar 

  • Shukla, R., & Dhir, V. (2008). Effect of Brownian motion on thermal conductivity of nanofluids. Journal of Heat Transfer, 130, 042406-1–042406-13.

    Google Scholar 

  • Sridhara, V., & Satapathy, L. N. (2011). Al2O3-based nanofluids: A review. Nanoscale Research Letters, 6, 456.

    Google Scholar 

  • Taylor, T. D. (1963). Heat transfer from single spheres in a low Reynolds number slip flow. Physics of Fluids, 6(7), 987–992.

    Google Scholar 

  • Tien, C. L., & Lienhard, J. H. (1979). Statistical thermodynamics. New York, NY: Hemisphere. Revised Printing.

    Google Scholar 

  • Timofeeva, E. V., Gavrilov, A. N., McCloskey, J. M., Tolmachev, W. V., Sprunt, S., Lopatina, L. M., et al. (2007). Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory. Physical Review E, 76, 061203.

    Google Scholar 

  • Turanov, A., & Tolmachev, Y. (2009). Heat and mass transport in aqueous silica nanofluids. Heat and Mass Transfer, 45, 1583–1588.

    Google Scholar 

  • Vadasz, J. J., Govender, S., & Vadasz, P. (2005). Heat transfer enhancement in nano-fluids suspensions: Possible mechanisms and explanations. International Journal of Heat and Mass Transfer, 48, 2673–2683.

    Google Scholar 

  • Verberg, R., Yeomans, J. M., Peierls, R., & Balazs, A. C. (2005). Modeling the flow of fluid/particle mixtures in microchannels: Encapsulating nanoparticles within monodisperse droplets. Journal of Chemical Physics, 123, 224706.

    Google Scholar 

  • Vernotte, P. (1958). Les paradoxes de la théorie continue de l’équation de la chaleur. Comptes Rendu, Paris, 246, 3154–3155.

    MathSciNet  Google Scholar 

  • Wamkam, C. T., Opoku, M. K., Hong, H., & Smith, P. (2011). Effects of pH on heat transfer nanofluids containing ZrO2 and TiO2 nanoparticles. Journal of Applied Physics, 109, 024305-1–024305-5.

    Google Scholar 

  • Wang, X. Q., & Mujumdar, A. S. (2007). Heat transfer characteristics of nanofluids: A review. International Journal of Thermal Sciences, 46, 1–19.

    MATH  Google Scholar 

  • Wang, L., & Wei, X. (2009). Nanofluids: Synthesis, heat conduction and extension. Journal of Heat Transfer, 131, 033102-1–033102-7.

    Google Scholar 

  • Wang, X., Xu, X., & Choi, S. U. S. (1999). Thermal conductivity of nanoparticle–fluid mixture. Journal of Thermophysics Heat Transfer, 13(4), 474–480.

    Google Scholar 

  • Wen, D., & Ding, Y. (2004). Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). Journal of Thermophysics and Heat Transfer, 18(4), 481–485.

    Google Scholar 

  • Wensel, J., Wright, B., Thomas, D., Douglas, W., Mannhalter, B., Smith, P., et al. (2008). Enhanced thermal conductivity by aggregation in heat transfer nanofluids containing metal oxide nanoparticles and carbon nanotubes. Applied Physics Letters, 92(2), 023110.

    Google Scholar 

  • Xie, H., Lee, H., Youn, W., & Choi, M. (2003). Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. Journal of Applied Physics, 94(8), 4967–4971.

    Google Scholar 

  • Xie, H., Wang, J., Xi, T., Liu, Y., & Ai, F. (2002). Thermal conductivity enhancement of suspensions containing nanosized alumina particles. Journal of Applied Physics, 91, 4568–4572.

    Google Scholar 

  • Xie, H., Yu, W., Li, Y., & Chen, L. (2011). Discussion on the thermal conductivity enhancement of nanofluids. Nanoscale Research Letters, 6, 124.

    Google Scholar 

  • Xuan, Y., & Li, Q. (2000). Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow, 21, 58–64.

    Google Scholar 

  • Xuan, Y., Li, Q., & Hu, W. (2003). Aggregation structure and thermal conductivity of nanofluids. AIChE Journal, 49, 1038–1043.

    Google Scholar 

  • Xuan, Y., Li, Q., Zhang, X., & Fujii, M. (2006). Stochastic thermal transport of nanoparticle suspensions. Journal of Applied Physics, 100, 043507.

    Google Scholar 

  • Xue, Q. Z. (2003). Model for effective thermal conductivity of nanofluids. Physics Letters A, 307, 313–317.

    Google Scholar 

  • Xue, Q. Z., Keblinski, P., Philpot, S. R., Choi, S. U. S., & Eastman, J. A. (2004). Effect of liquid layering at the liquid–solid interface on thermal transport. International Journal of Heat and Mass Transfer, 47, 4277–4284.

    MATH  Google Scholar 

  • Yang, B. (2008). Thermal conductivity equations based on Brownian motion in suspensions of nanoparticles (nanofluids). Journal of Heat Transfer, 130, 042408-1–042408-5.

    Google Scholar 

  • Yang, Y., Grulke, E. A., Zhang, Z. G., & Wu, G. (2006). Thermal and rheological properties of carbon-nanotube-in-oil dispersions. Journal of Applied Physics, 99, 114307.

    Google Scholar 

  • Yoo, D. H., Hong, K. S., Hong, T. E., Eastman, J. A., & Yang, H. S. (2007). Thermal conductivity of Al2O3/water nanofluids. Journal of Korean Physical Society, 51, S84–S87.

    Google Scholar 

  • Younes, H., Christensen, G., Luan, X., Hong, H. P., & Smith, P. (2012). Effects of alignment, pH, surfactant, and solvent on heat transfer nanofluids containing Fe2O3 and CuO nanoparticles. Journal of Applied Physics, 111, 064308. doi:10.1063/1.3694676.

    Google Scholar 

  • Yu, W., & Choi, S. U. S. (2003). The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model. Journal of Nanoparticle Research, 5, 167–171.

    Google Scholar 

  • Yu, W., & Choi, S. U. S. (2004). The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton–Crosser model. Journal of Nanoparticle Research, 6, 355–361.

    Google Scholar 

  • Yu, W., France, D. M., Timofeeva, E. V., & Singh, D. (2012). Effective thermal conductivity models for carbon nanotube based nanofluids. Journal of Nanofluids, 2, 69–73.

    Google Scholar 

  • Zhu, D., Li, X., Wang, N., Wang, X., Gao, J., & Li, H. (2009). Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids. Current Applied Physics, 9(1), 131–139.

    Google Scholar 

  • Zhu, H., Zhang, C., Tang, Y., Wang, J., Ren, B., & Yin, Y. (2007). Preparation and thermal conductivity of suspensions of graphite nanoparticles. Carbon, 45(1), 226–228.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Michaelides, E.E.(. (2014). Thermal Conductivity. In: Nanofluidics. Springer, Cham. https://doi.org/10.1007/978-3-319-05621-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05621-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05620-3

  • Online ISBN: 978-3-319-05621-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics