Well-Balanced Inundation Modeling for Shallow-Water Flows with Discontinuous Galerkin Schemes

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 78)

Abstract

Modeling coastal inundation for tsunami and storm surge hazard mitigation is an important application of geoscientific numerical modeling. While the complex topography demands for robust and locally accurate schemes, computational parallel efficiency and discrete conservation properties of the scheme are required. In order to meet these requirements, Runge-Kutta discontinuous Galerkin numerical methods are attractive. However, maintaining conservation and well-balancedness of these schemes with wetting/drying boundary conditions poses a challenge. We address this issue by a local nondestructive modification of the flux computation at boundary cells, which maintains accuracy, conservation and well-balancedness. The development can be viewed as a specialized flux limiter, which proves its usefulness with three different test cases for inundation simulation.

References

  1. 1.
    Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25(6), 2050–2065 (2004). doi:10.1137/S1064827503431090 CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bates, P.D., Hervouet, J.M.: A new method for moving-boundary hydrodynamic problems in shallow water. Proc. R. Soc. Lond. A 455(1988), 3107–3128 (1999). doi:10.1098/rspa.1999.0442 CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Behrens, J.: Numerical methods in support of advanced Tsunami early warning, Chap. 14. In: Freeden, W. (ed.) Handbook of Geomathematics, pp. 399–416. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Beisiegel, N., Behrens, J., Castro, C.E.: Development of an adaptive discontinuous Galerkin inundation model. J. Comput. Phys. (Submitted) (2013)Google Scholar
  5. 5.
    Bunya, S., Kubatko, E.J., Westerink, J.J., Dawson, C.: A wetting and drying treatment for the Runge-Kutta discontinuous Galerkin solution to the shallow water equations. Comput. Methods Appl. Mech. Eng. 198, 1548–1562 (2009). doi:10.1016/j.cma.2009.01.008 CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Carrier, G.F., Wu, T.T., Yeh, H.: Tsunami run-up and draw-down on a plane beach. J. Fluid Mech. 475, 79–99 (2003). doi:10.1017/S0022112002002653 CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Chen, C., Qi, J., Li, C., Beardsley, R.C., Lin, H., Walker, R., Gates, K.: Complexity of the flooding/drying process in an estuarine tidal-creek salt-marsh system: an application of FVCOM. J. Geophys. Res. 113, C07, 052 (2008). doi:10.1029/2007jc004328
  8. 8.
    Cockburn, B., Shu, C.W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phy. 141(2), 199–224 (1998). doi:10.1006/jcph.1998.5892 CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Giraldo, F.X., Warburton, T.: A high-order triangular discontinuous Galerkin oceanic shallow water model. Int. J. Numer. Meth. Fluids 56(7), 899–925 (2008). doi:10.1002/fld.1562 CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001). doi:10.1137/S003614450036757X CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Harig, S., Chaeroni, C., Pranowo, W.S., Behrens, J.: Tsunami simulations on several scales: comparison of approaches with unstructured meshes and nested grids. Ocean Dyn. 58, 429–440 (2008). doi:10.1007/s10236-008-0162-5 CrossRefGoogle Scholar
  12. 12.
    Hesthaven, J.S., Warburton, T.: Nodal discontinuous Galerkin methods: algorithms, analysis, and applications. Springer, New York (2008)CrossRefGoogle Scholar
  13. 13.
    Kärnä, T., de Brye, B., Gourgue, O., Lambrechts, J., Comblen, R., Legat, V., Deleersnijder, E.: A fully implicit wetting-drying method for DG-FEM shallow water models, with an application to the scheldt estuary. Comput. Methods Appl. Mech. Eng. 200(5–8), 509–524 (2011). doi:10.1016/j.cma.2010.07.001 CrossRefMATHGoogle Scholar
  14. 14.
    Kesserwani, G., Liang, Q.: Well-balanced RKDG2 solutions to the shallow water equations over irregular domains with wetting and drying. Comput. Fluids 39, 2040–2050 (2010). doi:10.1016/j.compfluid.2010.07.008 CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Shu, C.W.: TVB uniformly high-order schemes for conservation laws. Math. Comput. 49, 105–121 (1987). doi:10.1090/S0025-5718-1987-0890256-5 CrossRefMATHGoogle Scholar
  16. 16.
    Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988). doi:10.1016/0021-9991(88)90177-5 CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Thacker, W.C.: Some exact solutions to the nonlinear shallow-water wave equations. J. Fluid Mech. 107, 499–508 (1981). doi:10.1017/S0022112081001882 CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    The Third International Workshop on Long-Wave Runup Models: Benchmark problem #1: Tsunami runup onto a plane beach (2004). http://isec.nacse.org/workshop/2004_cornell/bmark1.html
  19. 19.
    Xing, Y., Zhang, X., Shu, C.W.: Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour. 33(12), 1476–1493 (2010). doi:10.1016/j.advwatres.2010.08.005 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Center for Earth System Research and Sustainability (CEN), Universität HamburgHamburgGermany

Personalised recommendations