Advertisement

Application of a Two-Fluid Model to Simulate the Heating of Two-Phase Flows

  • Jean-Marc Hérard
  • Olivier Hurisse
  • Antoine Morente
  • Khaled Saleh
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 78)

Abstract

This paper is dedicated to the simulation of two-phase flows on the basis of a two-fluid model that allows to account for the disequilibrium of velocities, pressures, temperatures and chemical potentials (mass transfer). The numerical simulations are performed using a fractional step method treating separately the convective part of the model and the source terms. The scheme dealing with the convective part of the model follows a Finite Volume approach and is based on a relaxation scheme. In the sequel, a special focus is put on the discretization of the terms that rule the mass transfer. The scheme proposed is a first order implicit scheme and can be verified using an analytical solution. Eventually, a test case of the heating of a mixture of steam and water is presented, which is representative of a steam generator device.

Keywords

Source Term Saturation Curve Entropy Inequality Partial Masse Relaxation Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Baer, M., Nunziato, J.W.: A two-phase mixture theory for the deflagration-to-detonation transition in reactive granular materials. Int. J. Multiph. Flows 12, 861–889 (1986)Google Scholar
  2. 2.
    Coquel, F., Hérard, J.M., Saleh, K., Seguin, N.: A robust entropy-satisfying finite volume scheme for the isentropic Baer Nunziato model. Math. Model. Numer. Anal. 48(1), 165–206 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Coquel, F., Hérard, J.M., Saleh, K., Seguin, N.: Two properties of two-velocity two-pressure models for two-phase flows. Comm. Math. Sci. 12(3), 593–600 (2014)CrossRefGoogle Scholar
  4. 4.
    Gallouët, T., Hérard, J.M., Seguin, N.: Numerical modeling of two-phase flows using the two-fluid two-pressure approach. Math. Models Meth. Appl. Sci. 14(5), 663–700 (2004)CrossRefzbMATHGoogle Scholar
  5. 5.
    Gavrilyuk, S.: The structure of pressure relaxation terms: one velocity case. EDF R&D report H-I83-2014-00276-EN (2014)Google Scholar
  6. 6.
    Hérard, J.M., Hurisse, O.: Computing two-fluid models of compressible water-vapour flows with mass transfer. AIAA paper 2012–2959. http://www.aiaa.org (2012)
  7. 7.
    Hérard, J.M., Hurisse, O.: A fractional step method to compute a class of compressible gas-liquid flows. Comput. Fluids 55, 57–69 (2012)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Hérard, J.M., Liu, Y.: Une approche bifluide statistique de modélisation des écoulements diphasiques à phases compressibles. EDF R&D report H-I81-2013-01162-FR (2013)Google Scholar
  9. 9.
    Ishii, M., Hibiki, T.: Thermo-fluid dynamics of two-phase flow. Springer, New York (2006)Google Scholar
  10. 10.
    Kapila, A., Bdzil, J., Menikoff, R., Son, S., Stewart, D.: Two-phase modelling of ddt in granular materials: reduced equations. Phys. Fluids 13, 3002–3024 (2001)CrossRefGoogle Scholar
  11. 11.
    Liu, Y.: Contribution à la vérification et à la validation d’un modèle diphasique bifluide instationnaire. Ph.D. thesis, Aix Marseille University, Marseille, France. http://tel.archives-ouvertes.fr/tel-00864567. Accessed 11 Sept 2013
  12. 12.
    Morente, A., Hurisse, O., Hérard, J.M.: Vérification d’un code pour les écoulements diphasiques. EDF R&D report H-I83-2013-03283-FR (2013)Google Scholar
  13. 13.
    Saleh, K.: Analyse et simulation par relaxation d’écoulements diphasiques compressibles. Ph.D. thesis, Pierre et Marie Curie University, Paris, France. http://tel.archives-ouvertes.fr/tel-00761099. Accessed 26 Nov 2012
  14. 14.
    Werner, W.: First CSNI numerical benchmark problem. Comparison report. CSNI report 47 (1980)Google Scholar
  15. 15.
    Yanenko, N.N.: Méthodes à pas fractionnaires. Armand Colin (1968)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jean-Marc Hérard
    • 1
  • Olivier Hurisse
    • 1
  • Antoine Morente
    • 1
  • Khaled Saleh
    • 2
  1. 1.EDF R&DChatouFrance
  2. 2.IRSNSaint-Paul-lez-Durance CedexFrance

Personalised recommendations