Advertisement

Numerical Simulations of a Fluid-Particle Coupling

  • Nina Aguillon
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 78)

Abstract

We present numerical simulations of a model of coupling between a inviscid compressible fluid and a pointwise particle. The particle is seen as a moving interface, through which interface conditions are prescribed. Key points are to impose those conditions at the numerical level, and to deal with the coupling between an ordinary and a partial differential equations.

Keywords

Euler Equation Riemann Problem Shallow Water Equation Numerical Flux Finite Volume Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abgrall, R., Karni, S.: Computations of compressible multifluids. J. Comput. Phys. 169(2), 594–623 (2001)Google Scholar
  2. 2.
    Aguillon, N.: Riemann problem for a fluid-particule coupling (2014) (Submitted)Google Scholar
  3. 3.
    Andreianov, B., Karlsen, K.H., Risebro, N.H.: A study of \(L^1\)-dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal. 201, 27–86 (2011)Google Scholar
  4. 4.
    Andreianov, B., Lagoutière, F., Seguin, N., Takahashi, T.: Well-posedness for a one-dimensional fluid-particle interaction model. SIAM J. Math. Appl. 46(2), 1030–1052 (2014)Google Scholar
  5. 5.
    Andreianov, B., Seguin, N.: Analysis of a Burgers equation with singular resonant source term and convergence of well-balanced schemes. Discrete Contin. Dyn. Syst. 32,1939–1964 (2012)Google Scholar
  6. 6.
    Borsche, R., Colombo, R.M., Garavello, M.: On the interactions between a solid body and a compressible inviscid fluid. To appear in Interfaces Free Bound (2014)Google Scholar
  7. 7.
    Boutin, B., Coquel, F., LeFloch, P.G.: Coupling techniques for nonlinear hyperbolic equations. III. The well-balanced approximation of thick interfaces. SIAM J. Numer. Anal. 51, 1108–1133 (2013)Google Scholar
  8. 8.
    Colombo, R.M., Guerra, G.: On general balance laws with boundary. J. Diff. Equat. 1017–1043 (2010)Google Scholar
  9. 9.
    Dal Maso, G., Lefloch, P.G., Murat, F.: Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74(6), 483–548 (1995)Google Scholar
  10. 10.
    Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457–492 (1999)Google Scholar
  11. 11.
    Goatin, P., LeFloch, P.G.: The Riemann problem for a class of resonant hyperbolic systems of balance laws. Ann. Inst. H. Poincaré Anal. Non Linéaire 21, 881–902 (2004)Google Scholar
  12. 12.
    Greenberg, J.M., Leroux, A.Y.: A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33(1), 1–16 (1996)Google Scholar
  13. 13.
    Hayes, B.T., Lefloch, P.G.: Nonclassical shocks and kinetic relations: strictly hyperbolic systems. SIAM J. Math. Anal. 31(5), 941–991 (2000)Google Scholar
  14. 14.
    Isaacson, E., Temple, B.: Nonlinear resonance in systems of conservation laws. SIAM J. Appl. Math. 52, 1260–1278 (1992)Google Scholar
  15. 15.
    Lagoutière, F., Seguin, N., Takahashi, T.: A simple 1D model of inviscid fluid-solid interaction. J. Diff. Equat. 245, 3503–3544 (2008)Google Scholar
  16. 16.
    Parés, C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44, 300–321 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Université Paris SudOrsayFrance

Personalised recommendations