Adaptive Time Discretization and Linearization Based on a Posteriori Estimates for the Richards Equation

  • Vincent BaronEmail author
  • Yves Coudière
  • Pierre Sochala
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 78)


We derive some a posteriori error estimates for the Richards equation, based on the dual norm of the residual. This equation is nonlinear in space and in time, thus its resolution requires fixed-point iterations within each time step. We propose a strategy to decrease the computational cost relying on a splitting of the error terms in three parts: linearization, time discretization, and space discretization. In practice, we stop the fixed-point iterations after the linearization error becomes negligible, and choose the time step in order to balance the time and space errors.


Space Discretization Posteriori Error Estimate Posteriori Estimate Richards Equation Nonlinear Iteration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alt Wilhelm, H., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Math. Z. 183(3), 311–341 (1983)Google Scholar
  2. 2.
    Baron, V., Coudière, Y., Sochala, P.: Comparison of DDFV and DG methods for flow in anisotropic heterogeneous porous media. Oil Gas Sci. Technol. Rev. IFP En. nouvelles (2013)Google Scholar
  3. 3.
    Bernardi, C., El Alaoui, L., Mghazli, Z.: A posteriori analysis of a space and time discretization of a nonlinear model for the flow in variably saturated porous media. IMA J. Numer. Anal. (2013)Google Scholar
  4. 4.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)Google Scholar
  5. 5.
    Destuynder, P., Métivet, B.: Explicit error bounds in a conforming finite element method. Math. Comput. Am. Math. Soc. 68(228), 1379–1396 (1999)Google Scholar
  6. 6.
    Di Pietro, D.A., Vohralík, M., Yousef, S., et al.: A posteriori error estimates with application of adaptive mesh refinement for thermal multiphase compositional flows in porous media. Comput. Math. Appl. (2013)Google Scholar
  7. 7.
    Dolejší, V., Ern, A., Vohralík, M.: A framework for robust a posteriori error control in unsteady nonlinear advection-diffusion problems. SIAM J. Numer. Anal. 51(2), 773–793 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Ern, A., Stephansen, A.F., Vohralík, M.: Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems. J. Comput. Appl. Math. 234(1), 114–130 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Ern, A., Vohralík, M.: A posteriori error estimation based on potential and flux reconstruction for the heat equation. SIAM J. Numer. Anal. 48(1), 198–223 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Haverkamp, R., Vauclin, M., Touma, J., Wierenga, P., Vachaud, G.: A comparison of numerical simulation models for one-dimensional infiltration. Soil Sci. Soc. America J. 41(2), 285–294 (1977)CrossRefGoogle Scholar
  11. 11.
    Ladevèze, P.: Comparaison de modèles de milieux continus. Ph.D. thesis (1975)Google Scholar
  12. 12.
    Manzini, G., Ferraris, S.: Mass-conservative finite volume methods on 2-D unstructured grids for the Richards equation. Adv. Water Res. 27(12), 1199–1215 (2004)CrossRefGoogle Scholar
  13. 13.
    Prager, W., Synge, J.L.: Approximations in elasticity based on the concept of function space. Q. Appl. Math. 5(3), 1–21 (1947)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.BRGMOrléansFrance
  2. 2.IMBTalence cedexFrance

Personalised recommendations