The ChIRP Robot: A Versatile Swarm Robot Platform

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 274)


Swarm Robotic experiments are ideally performed on real robots. However, a cost versus versatility trade-off exists between simpler and more advanced swarm robots. The simpler swarm robots provide limited features and thus, although suitable for simpler swarm tasks, lack versatility in the types of tasks that may be approached. On the other hand, advanced swarm robots provide a broader range of features, enabling a wide range of tasks to be approached, from simple to advanced. To address this trade-off, an available and versatile robotic platform is proposed: the Cheap, Interchangeable Robotic Platform — the ChIRP robot. The basic platform implements mandatory features required for most swarm experiments, providing a cheap simple and extendible platform. Further, extensions (including both electronic and mechanical features) enable an advanced specialised swarm robot tailored to the needs of a given research agenda. The design considerations and implementation details are presented herein. Further, an example swarm task for the basic ChIRP robot is presented together with an example task illustrating an extension of the ChIRP robot.


Robotic Platform Swarm Robots Robot Design Swarm Intelligence IR Sensors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Şahin, E.: Swarm robotics: From sources of inspiration to domains of application. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 10–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Sahin, E., Girgin, S., Bayindir, L., Turgut, A.E.: Swarm robotics. In: Blum, C., Merkle, D. (eds.) Swarm Intelligence. Natural Computing Series, pp. 87–100. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Karafotias, G., Haasdijk, E., Eiben, A.E.: An algorithm for distributed on-line, on-board evolutionary robotics. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 171–178. ACM, New York (2011)Google Scholar
  4. 4.
    Montanier, J.M., Bredeche, N.: Surviving the tragedy of commons: Emergence of altruism in a population of evolving autonomous agents. In: Proceedings of the 11th European Conference on Artificial Life, ECAL 2011, pp. 550–557 (2011)Google Scholar
  5. 5.
    Jakobi, N., Husband, P., Harvey, I.: Noise and the reality gap: The use of simulation in evolutionary robotics. In: Morán, F., Merelo, J.J., Moreno, A., Chacon, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  6. 6.
    Nolfi, S., Floreano, D., Miglino, O., Mondada, F.: How to Evolve Autonomous Robots: Different Approaches in Evolutionary Robotics. In: Brooks, R.A., Maes, P. (eds.) Artificial life IV: Proceedings of the 4th International Workshop on Artificial Life, pp. 190–197. MIT Press, MA (1994)Google Scholar
  7. 7.
    Bongard, J., Lipson, H.: Nonlinear system identification using coevolution of models and tests. IEEE Transactions on Evolutionary Computation 9, 361–384 (2005)CrossRefGoogle Scholar
  8. 8.
    Koos, S., Mouret, J.B., Doncieux, S.: Automatic system identification based on coevolution of models and tests. In: Proceedings of the Eleventh conference on Congress on Evolutionary Computation, CEC 2009, pp. 560–567. IEEE Press, Piscataway (2009)CrossRefGoogle Scholar
  9. 9.
    Prieto, A., Becerra, J.A., Bellas, F., Duro, R.J.: Open-ended evolution as a means to self-organize heterogeneous multi-robot systems in real time. Robot. Auton. Syst. 58, 1282–1291 (2010)CrossRefGoogle Scholar
  10. 10.
    Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: A low cost scalable robot system for collective behaviors. In: 2012 IEEE International Conference on Robotics and Automation, ICRA, pp. 3293–3298 (2012)Google Scholar
  11. 11.
    Maris, M., Boeckhorst, R.: Exploiting physical constraints: heap formation through behavioral error in a group of robots. In: Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 1996, vol. 3, pp. 1655–1660. IEEE (1996)Google Scholar
  12. 12.
    Mouret, J.-B., Doncieux, S.: Encouraging behavioral diversity in evolutionary robotics: an empirical study. Evolutionary Computation 20(1), 91–133 (2011)CrossRefGoogle Scholar
  13. 13.
    Soysal, O., Sahin, E.: Probabilistic aggregation strategies in swarm robotic systems. In: Proceedings 2005 IEEE Swarm Intelligence Symposium, SIS 2005, pp. 325–332. IEEE (2005)Google Scholar
  14. 14.
    Kornienko, S.: IR-based communication and perception in microrobotic swarms. arXiv preprint arXiv:1109.3617 (2011)Google Scholar
  15. 15.
    Bonani, M., Longchamp, V., Magnenat, S., Retornaz, P., Burnier, D., Roulet, G., Vaussard, F., Bleuler, H., Mondada, F.: The marXbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pp. 4187–4193 (2010)Google Scholar
  16. 16.
    Dorigo, M., Floreano, D., Gambardella, L.M., Mondada, F., Nolfi, S., Baaboura, T., Birattari, M., Bonani, M., Brambilla, M., Brutschy, A., et al.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine (2013) (in press)Google Scholar
  17. 17.
    Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Christophe Zufferey, J., Floreano, D., Martinoli, A.: The e-puck, a robot designed for education in engineering. In: Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, pp. 59–65 (2009)Google Scholar
  18. 18.
  19. 19.
    McLurkin, J., Lynch, A.J., Rixner, S., Barr, T.W., Chou, A., Foster, K., Bilstein, S.: A low-cost multi-robot system for research, teaching, and outreach. In: Martinoli, A., Mondada, F., Correll, N., Mermoud, G., Egerstedt, M., Hsieh, M.A., Parker, L.E., Støy, K. (eds.) Distributed Autonomous Robotic Systems. STAR, vol. 83, pp. 597–609. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    CRABlab-Team: Chirp homepage (2013),
  21. 21.
    Berg, J., Karud, C.H.: Swarm intelligence in bio-inspired robotics. Master’s thesis, Department of Computer and Information Science, The Norwegian University of Science and Technology (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.CRAB Lab, Gemini Centre of Applied Artificial IntelligenceThe Norwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations