Stable Modifiable Walking Pattern Generator with Arm Swing Motion Using Evolutionary Optimized Central Pattern Generator

  • Chang-Soo Park
  • Jong-Hwan Kim
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 274)


In this paper, a stable modifiable walking pattern generator (MWPG) is proposed by a employing arm swing motion. The arm swing motion is generated by a central pattern generator (CPG) which is optimized by a constraint evolutionary algorithm. In this scheme, the MWPG generates a position trajectory of center of mass (COM) of humanoid robot and the CPG generates the arm swing motion. A sensory feedback in the CPG is designed, which uses a inertial measurement unit (IMU) signal. For the optimization of the CPG parameters, a two-phase evolutionary programming (TPEP) is employed. The effectiveness of the proposed scheme is demonstrated by simulations using a Webots dynamic simulator for a small sized humanoid robot, HSR-IX, developed in the Robot Intelligence Technology (RIT) Lab, KAIST.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., Fujimura, K.: The intelligent ASIMO: system overview and integration. In: Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp. 2478–2483 (2002)Google Scholar
  2. 2.
    Akachi, K., Kaneko, K., Kanehira, N., Ota, S., Miyamori, G., Hirata, M., Kajita, S., Kanehiro, F.: Development of humanoid robot HRP-3P. In: Proc. IEEE-RAS Int. Conf. Humanoid Robots, pp. 50–55 (2005)Google Scholar
  3. 3.
    Ogura, Y., Aikawa, H., Shimomura, K., Kondo, H., Morishima, A., Lim, H.-O., Takanishi, A.: Development of a new humanoid robot WABIAN-2. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 76–81 (2006)Google Scholar
  4. 4.
    Park, I.-W., Kim, J.-Y., Lee, J., Oh, J.-H.: Online free walking trajectory generation for biped humanoid robot KHR-3(HUBO). In: Proc. IEEE Int. Conf. on Robot. Autom., pp. 1231–1236 (2006)Google Scholar
  5. 5.
    Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Yokoi, K., Hirukawa, H.: A realtime pattern generator for biped walking. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 31–37 (2002)Google Scholar
  6. 6.
    Motoi, N., Suzuki, T., Ohnishi, K.: A bipedal locomotion planning based on virtual linear inverted pendulum mode. IEEE Trans. Ind. Electron 56(1), 54–61 (2009)CrossRefGoogle Scholar
  7. 7.
    Erbatur, K., Kurt, O.: Natural ZMP trajectories for biped robot reference generation. IEEE Trans. Ind. Electron. 56(3), 835–845 (2009)CrossRefGoogle Scholar
  8. 8.
    Sato, T., Sakaino, S., Ohashi, E., Ohnishi, K.: Walking trajectory planning on stairs using virtual slope for biped robots. IEEE Trans. Ind. Electron. 58(4), 1385–1396 (2001)CrossRefGoogle Scholar
  9. 9.
    Lee, B.-J., Stonier, D., Kim, Y.-D., Yoo, J.-K., Kim, J.-H.: Modifiable Walking Pattern of a Humanoid Robot by Using Allowable ZMP Variation. IEEE Trans. Robot. 24(4), 917–925 (2008)CrossRefGoogle Scholar
  10. 10.
    Hong, Y.-D., Lee, B.-J., Kim, J.-H.: Command state-based modifiable walking pattern generation on an inclined plane in pitch and roll directions for humanoid robots. IEEE/ASME Trans. Mechatron. 16(4), 783–789 (2011)CrossRefGoogle Scholar
  11. 11.
    Taga, G.: Emergence of bipedal locomotion through entrainment among the neuro-musculo-skeletal system and the environment. Physica D: Nonlinear Phenomena 75(1-3), 190–208 (1994)CrossRefMATHGoogle Scholar
  12. 12.
    Aoi, S., Tsuchiya, K.: Stability analysis of a simple walking model driven by an oscillator with a phase reset using sensory feedback. IEEE Trans. Robot. 22(2), 391–397 (2006)CrossRefGoogle Scholar
  13. 13.
    Righetti, L., Ijspeert, A.J.: Programmable central pattern generators: an application to biped locomotion control. In: Proc. IEEE Int. Conf. Robot., pp. 1585–1590 (2006)Google Scholar
  14. 14.
    Park, C.-S., Hong, Y.-D., Kim, J.-H.: An Evolutionary Central Pattern Generator for Stable Bipedal Walking by the Increased Double Support Time. In: Proc. IEEE Int. Conf. Robot. Bio., pp. 497–502 (2011)Google Scholar
  15. 15.
    Nakaoka, S., Nakazawa, A., Yokoi, K., Hirukawa, H., Ikeuchi, K.: Generating whole body motions for a biped humanoid robot from captured human dances. In: Robotics and Automation, pp. 3905–3910 (2003)Google Scholar
  16. 16.
    Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.: Resolved momentum control: humanoid motion planning based on the linear and angular momentum. In: Proc. IEEE/RSJ Int. Conf. IROS, pp. 1644–1650 (2003)Google Scholar
  17. 17.
    Myung, H., Kim, J.-H.: Hybrid evolutionary programming for heavily constrained problems. BioSystems 38(1), 29–43 (1996)CrossRefGoogle Scholar
  18. 18.
    Kim, J.-H., Myung, H.: Evolutionary programming techniques for constrained optimization problems. IEEE Trans. Evol. Comput. 1(2), 129–140 (1997)CrossRefGoogle Scholar
  19. 19.
    Matsuoka, K.: Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biol. Cybern. 52(6), 367–376 (1985)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Vukobratovic, M., Borovac, B.: Zero-moment point-thirty live years of its life. Int. J. Humanoid Robot. 1(1), 157–173 (2004)Google Scholar
  21. 21.
    Michel, O.: Cyberbotics Ltd. WebotsTM: Professional mobile robot simulation. Int. J. Advanced Robot. Syst. 1(1), 39–42 (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Electrical EngineeringKAISTDaejeonRepublic of Korea

Personalised recommendations