Advertisement

Low Complexity Invariant Sets for Time-Delay Systems: A Set Factorization Approach

  • Sorin OlaruEmail author
  • Nikola Stanković
  • Georges Bitsoris
  • Silviu-Iulian Niculescu
Chapter
Part of the Advances in Delays and Dynamics book series (ADVSDD, volume 2)

Abstract

This chapter deals with the study of invariant sets for discrete time linear systems affected by delay. It establishes a new perspective on their structural properties via set factorization. This novel perspective describes, in a unified framework, different existing notions of invariant sets. Additionally, it is shown that the (possible non-minimal) state space representation is a key element in the description of low complexity invariant sets.

References

  1. 1.
    Blanchini. F., Miani, S.: Set-Theoretic Methods in Control. Springer, Birkhauser, Boston, (2008).Google Scholar
  2. 2.
    Lee, Y.I., Cannon, M., Kouvaritakis, B.: Extended invariance and its use in model predictive control. Automatica 41(12), 2163–2169 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Rakovic, S.V., Kern, B., Findeisen, R.: Practical set invariance for decentralized discrete time systems. In: 49th IEEE Conference on Decision and Control, pp. 3283–3288 (2010).Google Scholar
  4. 4.
    Rakovic, S.V., Gielen, R.H., Lazar, M.: Construction of invariant families of sets for linear systems with delay. In: American Control Conference (ACC), pp. 6246–6251 (2012).Google Scholar
  5. 5.
    Lombardi, W., Olaru, S., Bitsoris, G., Niculescu, S.-I.: Cyclic invariance for discrete time-delay systems. Automatica 48(10), 2730–2733 (2012)Google Scholar
  6. 6.
    Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.: Constrained model predictive control: stability and optimality. Automatica 36(6), 789–814 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Gielen, R., Lazar, M., Olaru, S.: Set-induced stability results for delay difference equations. In: Sipahi, R., Vyhlidal, T., Niculescu, S.-I., Pepe, P. (eds.) Time Delay Systems: Methods, Applications and New Trends, pp. 73–84. Springer (2012).Google Scholar
  8. 8.
    Lombardi, W., Olaru, S., Lazar, M., Niculescu, S.-I.: On positive invariance for delay difference equations. In: Proceedings of the IEEE American Control Conference, pp. 3674–3679 (2011).Google Scholar
  9. 9.
    Lombardi, W.: Constrained control for time-delay systems. Ph.D thesis, SUPELEC (2011).Google Scholar
  10. 10.
    Halbwachs, N., Merchat, D., Parent-Vigouroux, C.: Cartesian factoring of polyhedra in linear relation analysis. In: Cousot R. (ed.) Static Analysis. Lecture Notes in Computer Science, vol. 2694, pp. 355–365. Springer, Berlin Heidelberg (2003).Google Scholar
  11. 11.
    Halbwachs, N., Merchat, D., Gonnord, L.: Some ways to reduce the space dimension in polyhedra computations. Formal Methods Syst. Des. 29(1), 79–95 (2006)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sorin Olaru
    • 1
    Email author
  • Nikola Stanković
    • 2
  • Georges Bitsoris
    • 3
  • Silviu-Iulian Niculescu
    • 4
  1. 1.E3S (SUPELEC Systems Sciences) and EPI INRIA DISCOGif-sur-YvetteFrance
  2. 2.E3S (SUPELEC Systems Sciences)Gif-sur-YvetteFrance
  3. 3.Control Systems Laboratory, Department of Electrical and Computer EngineeringUniversity of PatrasPatrasGreece
  4. 4.Laboratory of Signals and Systems (L2S, UMR CNRS 8506)CNRS-SupelecGif-sur-YvetteFrance

Personalised recommendations