Skip to main content

Bayesian Statistical Inference: An Overview

  • Chapter
  • First Online:
Statistical Methods and Applications from a Historical Perspective

Part of the book series: Studies in Theoretical and Applied Statistics ((STASSPSS))

  • 1649 Accesses

Abstract

The Bayesian approach for statistical inference is examined, pointing out also the differences among the many Bayesian philosophies. Moreover comments are given about topics where the Bayesian approach seems (at least to Bayesians) more suitable than the alternatives. At last the decision-theoretic approach is shortly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Barbieri, M.M., Berger, J.O.: Optimal predictive model selection. Ann. Stat. 32, 870–897 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Basu, D.: Statistical information and likelihood. Sankhyā A 37, 1–71 (1975)

    MATH  Google Scholar 

  • Bayarri, M.J., Berger, J.O.: P-values for composite null models (with discussion). J. Am. Stat. Assoc. 95, 1127–1170 (2000)

    MATH  MathSciNet  Google Scholar 

  • Bayarri, M.J., Berger, J.O.: The interplay of Bayesian and frequentist analysis. Stat. Sci. 19, 58–80 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Bayarri, M.J., DeGroot, M.H., Kadane, J.B.: What is a likelihood function? In: Gupta, S.S., Berger, J.O. (eds.) Statistical Decision Theory and Related Topics, vol. 1, pp. 3–16. Springer, New York (1988)

    Chapter  Google Scholar 

  • Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer, New York (1985)

    Book  MATH  Google Scholar 

  • Berger, J.O.: Are P-values reasonable measures of accuracy? In: Francis, I.S. et al. (eds.) Pacific Statistical Congress. Elsevier, Amsterdam (1986)

    Google Scholar 

  • Berger, J.O.: Bayes factors. In: Kotz, S., Read, C,B., Banks, D.L. (eds.) Encyclopedia of Statistical Sciences. Update, vol. 3, pp. 20–29. Wiley, New York (1999)

    Google Scholar 

  • Berger, J.O.: Bayesian analysis: a look at today and thoughts of tomorrow. In: Raftery, A.E., et al. (eds.) Statistics in the 21th Century, pp. 275–290. Chapman and Hall/CRC, Boca Raton (2000)

    Google Scholar 

  • Berger, J.O.: Could Fisher, Jeffreys and Neyman have agreed on testing? Stat. Sci. 18, 1–32 (2003)

    Article  MATH  Google Scholar 

  • Berger, J.O.: The case for objective Bayesian analysis. Bayesian Anal. 3, 385–402 (2006)

    Google Scholar 

  • Berger, J.O., Bernardo, J.M.: On the development of reference priors. In: Bernardo, J.M., et al. (eds.) Bayesian Statistics 4. Clarendon Press, Oxford (1992)

    Google Scholar 

  • Berger, J.O., Pericchi, L.R.: The intrinsic Bayes factor for model selection and prediction. J. Am. Stat. Assoc. 91, 109–122 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Berger, J.O., Wolpert, R.: The Likelihood Principle, 2nd edn. Institute of Mathematical Statistics, Hayward (1988)

    Google Scholar 

  • Berger, J.O., Betrò, B., Moreno, E., Pericchi, L.R., Ruggeri, F., Salinetti, G., Wasserman, L. (eds.): Bayesian Robustness. Institute of Mathematical Statistics, Hayward (1996)

    MATH  Google Scholar 

  • Berger, J.O., Bernardo, J.M., Sun, D.: The formal definition of reference priors. Ann. Stat. 37, 905–938 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Bernardo, J.M.: Reference posterior distributions for Bayesian inference (with discusion). J. Roy. Stat. Soc. Ser. B 41, 113–147 (1979)

    MATH  MathSciNet  Google Scholar 

  • Bernardo, J.M.: Bruno de Finetti en la Estadística Contempornea. In: Rìos, S. (ed.) Historia de la Matmatica en el siglo XX, pp. 63–80. Real Academia de Ciencias, Madrid (x 1998)

    Google Scholar 

  • Bernardo, J.M.: Reference analysis. In: Dey, D.K., Rao, C.R. (eds.) Handbook of Statistics, pp. 17–90. Elsevier, Amsterdam (2005)

    Google Scholar 

  • Bernardo, J.M., Smith, A.F.M.: Bayesian Theory. Wiley, Chichester (1994)

    Book  MATH  Google Scholar 

  • Bertrand, J.: Calcul des Probabilités. Chelsea, New York (1907)

    MATH  Google Scholar 

  • Birnbaum, A.: On the foundations of statistical inference. J. Am. Stat. Assoc. 57, 269–306 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  • Box, G.E.P.: Sampling and Bayes’ inference in scientific modelling and robustness (with discussion). J. Roy. Stat. Soc. Ser. A 143, 383–430 (1980a)

    Article  MATH  MathSciNet  Google Scholar 

  • Box, G.E.P.: Sampling and Bayes’ inference and robustness in the advancement of learning (extended abstract with discussion). In: Bernardo, J.M., et al. (eds.) Bayesian Statistics. University Press, Valencia (1980b)

    Google Scholar 

  • Box, G.E.P., Tiao, G.C.: Bayesian inference in statistical analysis. Addison-Wesley, Reading (1973)

    MATH  Google Scholar 

  • Carota, C., Parmigiani, G.: On Bayes factors for nonparametric alternatives. In: Bernardo, J.M., et al. (eds.) Bayesian Statistics 5, pp. 507–511. Clarendon Press, Oxford (1996)

    Google Scholar 

  • Chaloner, K., Verdinelli, I.: Bayesian experimental design: a review. Stat. Sci. 10, 273–304 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Chen, M-H, Dey, D.K., Mller, P., Sun, D., Ye, K. (eds.): Frontiers of Statistical Decision Making and Bayesian Analysis. In Honor of James O. Berger. Springer, New York (2010)

    Google Scholar 

  • Cifarelli, M., Muliere, P.: Statistica Bayesiana. G. Iuculano, Pavia (1989)

    Google Scholar 

  • Cifarelli, D.M., Regazzini, E.: Some considerations about mathematical statistics teaching methodology suggested by the concept of exchangeability. In: Koch, G., Spizzichino, F., (eds.) Exchangeability in Probability and Statistics. North Holland, Amsterdam (1982)

    Google Scholar 

  • Cifarelli, D.M., Regazzini, E.: de Finetti’s contribution to probability and statistics. Stat. Sci. 11, 253–282 (1996)

    Google Scholar 

  • Clyde, M., George, E.J.: Model uncertainty. Stat. Sci. 19, 81–94 (2004)

    MATH  MathSciNet  Google Scholar 

  • Consonni, G., Veronese, P.: Bayes factors for linear models with improper priors. In: Bernardo, J.M., et al. (eds.) Bayesian Statistics 4, pp. 587–594. Clarendon Press, Oxford (1991)

    Google Scholar 

  • Cox, D.R.: Some problems connected with statistical inference. Ann. Math. Stat. 29, 357–372 (1958)

    Article  MATH  Google Scholar 

  • Cox, D.R.: Principles of Statistical Inference. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  • Daboni, L., Wedlin, A.: Statistica. Un’introduzione alla statistica neo-bayesiana. UTET, Torino (1982)

    MATH  Google Scholar 

  • Dale, A.I.: A History of Inverse Probability. From Thomas Bayes to Karl Pearson. Springer, New York (1991)

    Book  MATH  Google Scholar 

  • Dawid, A.P.: Intersubjective statistical models. In: Koch, G., Spizzichino, F. (eds.) Exchangeability in Probability and Statistics. North-Holland, Amsterdam (1982)

    Google Scholar 

  • de Finetti, B.: Sul significato soggettivo della probabilità. Fundamenta Mathematicae 17 (1931). Reprinted in: Opere Scelte, vol. I, pp. 191–222. Cremonese, Roma (2006)

    Google Scholar 

  • de Finetti, B.: Il problema della perequazione. Atti della Soc Ital per il Progresso delle Scienze, XXIII riunione (1935). Reprinted in: Opere Scelte, vol. I, pp. 287–288, Cremonese, Roma (2006)

    Google Scholar 

  • de Finetti, B.: La prévision: ses lois logiques, ses sources subjectives. Ann. Inst. H. Poincar 7, 1–68 (1937) [English translation in Studies in Subjective Probability (Kyburg, H.E. and Smokler, H.E. eds.), Wiley, New York, 1964]

    Google Scholar 

  • de Finetti, B.: L’opera di Abraham Wald e l’assestamento concettuale della statistica matematica moderna. Statistica 11, 185–192 (1951)

    Google Scholar 

  • de Finetti, B.: La probabilità e la statistica nei rapporti con l’induzione secondo i diversi punti di vista. Cremonese, Roma (1959) (English translation in de Finetti, B.: Probability, Induction and Statistics. Wiley, London, 1972)

    Google Scholar 

  • de Finetti, B.: Teoria della probabilità. Einaudi, Torino (1970) (English translation in Theory of Probability, Wiley, New York, 1974)

    Google Scholar 

  • de Finetti, B., Savage, L.J.: Sul modo di scegliere le probabilità iniziali. In: Sui Fondamenti della Statistica. Biblioteca di Metron, pp. 81–154. Università di Roma, Roma (1962)

    Google Scholar 

  • DeGroot, M.H.: Optimal Statistical Decisions. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  • De Santis, F.: Sample size determination for robust Bayesian analysis. J. Am. Stat. Assoc. 101, 278–291 (2006)

    Article  MATH  Google Scholar 

  • De Santis, F.: Using historical data for Bayesian sample size determination. J. Roy. Stat. Soc. Ser. A 70, 95–113 (2007)

    Article  Google Scholar 

  • De Santis, F., Spezzaferri, F.: Alternative Bayes factors for model selection. Can. J. Stat. 25, 503–515 (1997)

    Article  MATH  Google Scholar 

  • Edwards, W., Lindman, H., Savage, L.J.: Bayesian statistical inference for psychological research. Psychol. Rev. 70, 193–242 (1963)

    Article  Google Scholar 

  • Etzioni, R., Kadane, J.B.: Optimal experimental design for another’s analysis. J. Am. Stat. Assoc. 88, 1404–1411 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Ferguson, T.: A Bayesian analysis of some nonparametric problems. Ann. Stat. 1, 209–230 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  • Fienberg, S.E.: A brief history of statistics in three and one-half chapters. Stat. Sci. 7, 208–225 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Fienberg, S.E.: A “Bayesian classics” reading list. ISBA Bull. 12, 9–14 (2005)

    Google Scholar 

  • Fienberg, S.E.: When did Bayesian inference become “Bayesian”? Bayesian Anal. 1, 1–40 (2006)

    Article  MathSciNet  Google Scholar 

  • Fisher, R.A.: On the mathematical foundations of theoretical statistics. Phil. Trans. R. Soc. Ser. A 309–368 (1922). Reprinted in: Fisher, R.A.: Contributions to Mathematical Statistics. Wiley, New York (1950)

    Google Scholar 

  • Geisser, S.: Predictive Inference: Asn Introduction. Chapman and Hall, London (1993)

    Book  Google Scholar 

  • Giovagnoli, A., Verdinelli, I.: Bayes D-optimal and E-optimal block designs. Biometrika 79, 695–706 (1983)

    Article  MathSciNet  Google Scholar 

  • Goldstein, M.: Subjective Bayesian analysis: principles and practice. Bayesian Anal. 1, 403–420 (2006)

    Article  MathSciNet  Google Scholar 

  • Hoeting, J.A., Madigan, D., Raftery, A.E., Volinsky, C.: Bayesian model averaging: a tutorial (with discussion). Stat. Sci. 14, 382–417 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Ibrahim, J.G., Chen, M.H.: Power prior distributions in regression models. Stat. Sci. 15, 46–60 (2000)

    Article  MathSciNet  Google Scholar 

  • Kadane, J.B., Lazar, N.A.: Methods and criteria for model selection. J. Am. Stat. Assoc. 99, 279–290 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Kass, R.E., Raftery, A.E.: Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995)

    Article  MATH  Google Scholar 

  • Kass, R.E., Wasserman, L.: The selection of prior distributions by formal rules. J. Am. Stat. Assoc. 91, 1343–1370 (1993)

    Article  Google Scholar 

  • Key, J.T., Pericchi, L.R., Smith, A.M.F.: Bayesian model choice: What and why? In: Bernardo, J.M., et al. (eds.) Bayesian Statistics 6. Clarendon Press, Oxford (2001)

    Google Scholar 

  • Lahiri, P. (ed.): Model Selection. Institute of Mathematical Statistics, Beachwood (2001)

    MATH  Google Scholar 

  • Lavine, M., Schervish, M.J.: Bayes factors: what they are and what they are not. Am. Statististician 53, 119–122 (1999)

    MathSciNet  Google Scholar 

  • Lehmann, E.L.: Testing Statistical Hypotheses, 2nd edn. Wiley, New York (1986)

    Book  MATH  Google Scholar 

  • Lijoi, A., Prünster, I.: Models beyond the Dirichlet process. In: Hjort, N.L., et al. (eds.) Bayesian Nonparametrics, pp. 80–136, Cambridge University Press, Cambridge (2000)

    Google Scholar 

  • Lindley, D.V.: Probability and Statistics. Cambridge University Press, Cambridge (1965)

    MATH  Google Scholar 

  • Lindley, D.V.: The estimation of many parameters. In: Godambe, V.P., Sprott, D.A., (eds.) Foundations of Statistical Inference pp. 435–447, Holt Rinehart and Winston, Toronto (1971)

    Google Scholar 

  • Lindley, D.V.: Bayesian Statistics, A Review. SIAM, Philadelphia (1972)

    Book  Google Scholar 

  • Lindley, D.V.: Understanding Uncertainty. Wiley, Hoboken (2006)

    Book  MATH  Google Scholar 

  • Lindley, D.V., Smith, A.M.F.: Bayes estimates for the linear model. J. Roy. Stat. Soc. Ser. B 34, 1–18 (1972)

    MATH  MathSciNet  Google Scholar 

  • Liseo, B.: The elimination of nuisance parameters. In: Dey, D., Rao, C.R. (eds.) Handbook of Statistics, vol. 25, pp. 193–219. Elsevier, Amsterdam (2006)

    Google Scholar 

  • Liseo, B., Petrella, L., Salinetti, G.: Robust Bayesian analysis; an interactive approach. In: Bernardo, J.M., et al. (eds.) Bayesian Statistics 5, pp. 661–666. Clarendon Press, Oxford (1996)

    Google Scholar 

  • Muliere, P., Petrone, S.: A Bayesian predictive approach to sequential search for an optimal dose, parametric and nonparametric models. J. Ital. Stat. Soc. 3, 349–364 (1993)

    Article  Google Scholar 

  • Neyman, J.: “Inductive behavior” as a basic concept of philosophy of science. Rev. Int. Stat. 25, 7–22 (1957)

    Article  MATH  Google Scholar 

  • O’Hagan, A.: Fractional Bayes factors for model comparisons. J. Roy. Stat. Soc. Ser. B 57, 99–138 (1995)

    MATH  MathSciNet  Google Scholar 

  • O’Hagan, A., Buck, C.E., Daneshkhah, A., Eiser, J.R., Garthwaite, P.H., Jenkinson, D.J., Oakley, J.E., Rakov, T.: Uncertain Judgements. Eliciting Experts’ Probabilities. Wiley, Chichester (2006)

    MATH  Google Scholar 

  • Pearson, K.: The fundamental problem of practical statistics. Biometrika 13, 1–16 (1920)

    Article  Google Scholar 

  • Piccinato, L.: On the orderings of decision functions. Symposia Mathematica (Istituto Nazionale di Alta Matematica) XXV, 61–70 (1980)

    Google Scholar 

  • Piccinato, L.: de Finetti’s logic of uncertainty and its impact on statistical thinking and practice. In: Goel, P.K., Zellner, A. (eds.) Bayesian Inference and Decision Techniques. Essays in Honor of Bruno de Finetti pp. 13–30, North Holland, Amsterdam (1986)

    Google Scholar 

  • Piccinato, L.: Metodi per le Decisioni Statistiche, 2nd edn. Springer-Italia, Milano (2009)

    Book  Google Scholar 

  • Racugno, W. (ed.): Proceedings of the Workshop on Model Selection. Pitagora, Bologna (1997)

    Google Scholar 

  • Raiffa, H., Schlaifer, R.: Applied Statistical Decision Theory. MIT Press, Cambridge (1961)

    Google Scholar 

  • Ramsey, F.P.: Truth and probability. In: The Foundations of Mathematics and Other Logical Essays. Kegan, London (1926). Reprinted in: Studies in Subjective Probability (Kyburg, H.E., Smokler, H.E. eds.) Wiley, New York (1964)

    Google Scholar 

  • Regazzini, E.: Old and recent results on the relationship between predictive inference and statistical modelling either in nonparametric or parametric form (with discusssion). In: Bernardo, J.M., et al. (eds.) Bayesian Statistics 6, pp. 571–588. Clarendon Press, Oxford (1999)

    Google Scholar 

  • Ríos Insua, D., Ruggeri, F. (eds.): Robust Bayesian Analysis. Springer, New York (2000)

    MATH  Google Scholar 

  • Royall, R.: Statistical Evidence. A Likelihood Paradigm. Chapman and Hall, London (1997)

    MATH  Google Scholar 

  • San Martini A., Spezzaferri, F.: A predictive model selection criterion. J. Roy. Stat. Soc. Ser. B 46, 296–303 (1984)

    MATH  Google Scholar 

  • Savage, L.J.: The Foundations of Statistics. Wiley, New York (1954) (2nd edn., Dover, New York, 1972)

    MATH  Google Scholar 

  • Savage, L.J.: Subjective probability and statistical practice. In: Barnard, G.A., Cox, D.R. (eds.) The Foundations of Statistical Inference. Methuen, London (1962)

    Google Scholar 

  • Savage, L.J.: On rereading R.A. Fisher. Ann. Stat. 4, 441–500 (1976)

    Google Scholar 

  • Scozzafava, R.: A survey of some common misunderstandings concerning the role and meaning of finitely additive probabilities in statistical inference. Statistica 44, 21–45 (1984)

    MATH  MathSciNet  Google Scholar 

  • Smith, A.M.F., Verdinelli, I.: A note on Bayes designs for inference using a hierarchical linear model. Biometrika 7, 613–619 (1980)

    Article  MathSciNet  Google Scholar 

  • Spiegelhalter, D.G., Abrams, K.R., Myles, J.P.: Bayesian approaches to clinical trials and health-care evaluations. Wiley, New York (2004)

    Google Scholar 

  • Spizzichino, F.: Subjective Probability Models for Lifetimes. Chapman and Hall/CRC, Boca Raton (2001)

    Book  MATH  Google Scholar 

  • Stigler, S.M.: Thomas Bayes’ Bayesian inference. J. Roy. Stat. Soc. Ser. A 145, 250–258 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  • Stigler, S.M.: The History of Statistics: The Measurement of Uncertainty Before 1900. Harvard University Press, Cambridge (1986)

    MATH  Google Scholar 

  • Tsutakawa, R.K.: Design of Experiment for Bioassay. J. Am. Stat. Assoc. 67, 584–590 (1972)

    Article  MATH  Google Scholar 

  • Wald, A.: Statistical Decision Functions. Wiley, New York (1950)

    MATH  Google Scholar 

  • Walker, S.G., Muliere, P.: Beta-Stacy processes and a generalisation of the Pólya-urn scheme. Ann. Stat. 25, 1762–1780 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Walker, S.G., Gutierrez-Peña, E., Muliere, P.: A decision theoretic approach to model averaging. Statistician 50, 31–39 (2001)

    MathSciNet  Google Scholar 

  • Wang, F., Gelfand, A.E.: A simulation-based approach to Bayesian sample size determination for performance under a given model and for separating models. Stat. Sci. 17, 193–208 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Zabell, S.: R.A.Fisher on the history of inverse probability (with discussion). Stat. Sci. 4, 247–263 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovico Piccinato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Piccinato, L. (2014). Bayesian Statistical Inference: An Overview. In: Crescenzi, F., Mignani, S. (eds) Statistical Methods and Applications from a Historical Perspective. Studies in Theoretical and Applied Statistics(). Springer, Cham. https://doi.org/10.1007/978-3-319-05552-7_5

Download citation

Publish with us

Policies and ethics