Advertisement

Texture Analysis of Carotid Plaque Ultrasound Images

  • Krishnaswamy Sumathi
  • Mahesh Veezhinathan
Part of the Studies in Computational Intelligence book series (SCI, volume 551)

Abstract

In this work, analysis of carotid plaque ultrasound images have been attempted using statistical method based on Gray Level Co-occurrence matrix (GLCM). The ultrasound imaging of the carotid arteries is a common study performed for diagnosis of carotid artery disease. The first order linear scaling filter was used to enhance the image quality for analysis. Second order statistical texture analysis is performed on the acquired images using GLCM method and a set of 12 features are derived. Principal Component Analysis (PCA) is employed to reduce features used for classifying normal and abnormal images to four which had maximum magnitude in the first principal component. It appears that, during diagnosis this method of texture analysis could be useful to develop an automated system for characterisation and classification of carotid ultrasound images.

Keywords

Atherosclerosis Cardio vascular diseases Carotid Plaque Principal component analysis Stenosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    American Heart Association: Heart Disease and Stroke Statistics, update, Dallas, Texas (2007)Google Scholar
  2. 2.
    Loizou, C.P., Murray, V., Pattichis, M.S., Pantziaris, M., Pattichis, C.S.: Multiscale Amplitude-Modulation Frequency-Modulation (AM–FM)Texture Analysis of Ultrasound Images of the Intima and Media Layers of the Carotid Artery (2011)Google Scholar
  3. 3.
    Nicolaides, A., Sabetai, M., Kakkos, S.M.: The Asymptomatic Carotid Stenosis and Risk of Stroke (ACSRS) study. Aims and results of quality control. Int. Angiol. 22(3), 263–272 (2003)Google Scholar
  4. 4.
    Geroulakos, G., Domjan, J., Nicolaides, A.: Ultrasonic carotid artery plaque structure and the risk of cerebral infraction on computed tomography. J. Vasc. Surg. 20(2), 263–266 (1994)CrossRefGoogle Scholar
  5. 5.
    Christodoulou, C.I., Pattichis, C.S., Kyriacou, E., Nicolaodes, A.: Image Retrieval and Classification of Carotid Plaque Ultrasound Images. The Open Cardiovascular Imaging Journal 2, 18–28 (2010)CrossRefGoogle Scholar
  6. 6.
    Loizou, C.P.: Constantinos: Comparitive Evaluation of despecke filtering in ultrasound imaging of the carotid artery. IEEE Transaction on Ultrasonics, Ferroelectronics and Frequency Control 52(10) (October 2005)Google Scholar
  7. 7.
    Loizou, C.P., Pattichis, C.S., Pantiziaris, M., Tyllis, T., Nicolaides, A.: Snake based segmentation of the common carotid artery intima media. Med. Bio. Eng. Comput. 45, 35–49 (2007), doi:10.1007/s11517-006-0140-3CrossRefGoogle Scholar
  8. 8.
    Lee, J.S.: Redefined filtering of image noise using local stastistics. Computer Graph Image Processing 15, 380–389 (1981)CrossRefGoogle Scholar
  9. 9.
    Nicolaides, A.N., Kakkos, S.M., Griffin, M.: Effect of image normalization on carotid plaque classification and the risk of ipsilateral hemispheric ischemic events: results from the asymptomatic carotid stenosis and risk of stroke study. Vascular 13(4), 211–221 (2005)CrossRefGoogle Scholar
  10. 10.
    Loizou, C.P., Pattichis, C.S., Nicolaides, A.N., Pantziaris, M.: Manual and automated media and Intima thickness measurements of the common carotid artery. IEEE Transactions on Ultr. Fer. Freq. Contr. 56(5), 983–994 (2009)CrossRefGoogle Scholar
  11. 11.
    Christodoulou, C.I., Kyriacou, E., Pattichis, M.S., Pattichis, C.S., Nicolaides, A.: A Comparative Study of Morphological and other Texture Features for the Characterization of Atherosclerotic Carotid Plaques. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 503–511. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Kim, J.K., Park, H.W.: Statistical Texture features for Detection of Microcalcifications in Digitised Mammograms. IEEE Transactions on Medical Imaging 18(3) (March 1999)Google Scholar
  13. 13.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Texture features for image classification. IEEE Trans. Syst. Man Cybern. 3, 610–621 (1973)CrossRefGoogle Scholar
  14. 14.
    Wagner, R.F., Smith, S.W., Sandrik, J.M., Lobes, H.: Statistics of speckle in ultrasound B scans. IEEE Trans. Sonics Ultrason. 30, 156–163 (1983)CrossRefGoogle Scholar
  15. 15.
    Loizou, C.P., Pattichis, E.C.S., Pantziaris, E.M., Tyllis, T., Nicolaides, E.A.: Quality evaluation of ultrasound imaging in the carotid artery based on normalization and speckle reduction filtering. Med. Biol. Eng. Computation 44, 414–426 (2006)CrossRefGoogle Scholar
  16. 16.
    Bian, N., Eramian, M.G., Pierson, R.A.: Evaluation of texture features for analysis of ovarian follicular development. Med. Image Comput. Comput. Assist. Interv. 9(pt. 2), 93–100 (2006)Google Scholar
  17. 17.
    Lopes, R., Betrouni, N.: Fractal and multifractal analysis: A review. Med. Image Anal. 13(4), 634–649 (2009)CrossRefGoogle Scholar
  18. 18.
    Zeng, Y., Zhang, J., van Genderen, J.L., Zhang, Y.: Image fusion for land cover change detection. Int. J. Image Data Fusion 1(2), 193–215 (2010)CrossRefGoogle Scholar
  19. 19.
    Ion, A.L.: Methods for knowledge discovery in images. Inf. Technol. Con. 38(1) (2009)Google Scholar
  20. 20.
    Ozdemir, I., Norton, D.A., Ozkan, U.Y., Mert, A., Senturk, O.: Estimation of Tree Size Diversity Using Object Oriented Texture Analysis and Aster Imagery. Sensors 8(8), 4709–4724 (2008)CrossRefGoogle Scholar
  21. 21.
    Hassan, H.H., Goussev, S.: Texture analysis of high resolution aeromagnetic data to identify geological features in the Horn river basin, NE British Columbia, Recovery, CSPG CSEG CWLS Convention (2011)Google Scholar
  22. 22.
    Dong, K., Feng, Y., Jacobs, K.M., Lu, J.Q., Brock, R.S., Yang, L.V., Bertrand, F.E., Farwell, M.A., Hu, X.-H.: Label-free classification of cultured cells through diffraction imaging, Biomed. Optics Express 2(6), 1717–1726 (2011)CrossRefGoogle Scholar
  23. 23.
    Priya, E., Srinivasan, S., Ramakrishnan, S.: Differentiation of digital TB images using texture analysis and RBF classifier. Biomedical Sciences Instrumentation 48, 516–523 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of ECESri Sairam Engineering CollegeChennaiIndia
  2. 2.Department of BMESSN College of EngineeringChennaiIndia

Personalised recommendations