A New Technique for Edge Detection of Chromosome G-BAND Images for Segmentation

Part of the Studies in Computational Intelligence book series (SCI, volume 551)


Chromosome edge detection of G-band type images are an important for segmentation. Generally, the chromosome G-band images consisted of the noise, lack of contrast and hole in the images. The chromosome edge can mislead of the edge detection method, particularly the chromosome overlaps and the chromosome touches. It’s difficult a clear edge of the chromosome edge images. The edge detection method is difficult when the noise appear. This paper proposed approach the chromosome edge detection in the chromosome segmentation system. The chromosome edge detection method applied the FloodFill, Erosion and Canny based on the chromosome G-band images. The experimental results give the best performance for chromosome segmentation system. A success rate of proposed method achieved 98.43%.


Edge Detection Chromosome Chromosome Analysis Karyotype Chromosome G-band 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wayalun, P., Laopracha, N., Songrum, P., Wanchanthuek, P.: Quality Evaluation for Edge Detection of Chromosome Gband Images for Segmentation. Applied Medical Informatics 32(1), 25–32 (2013)Google Scholar
  2. 2.
    Grisan, E., Poletti, E., Ruggeri, A.: Automatic Segmentation and Disentangling of Chromosomes in Q-Band Prometaphase Images. IEEE Trans. Inform. Tech. Biomed. 13(4), 575–581 (2009)CrossRefGoogle Scholar
  3. 3.
    Heydarian, M., Noseworthy, M.D., Kamath, M.V., Boylan, C., Poehlman, W.F.S.: Optimizing the Level Set Algorithm for Detecting Object Edges in MR and CT Images. IEEE Trans. Nucl. Sci. 56, 156–166 (2009)CrossRefGoogle Scholar
  4. 4.
    Mondal, T., Jain, A., Sardana, H.K.: Automatic Craniofacial Structure Detection on Cephalometric Images. IEEE Trans. Image Process. 20(9), 2606–2614 (2011)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Yu, Y., Acton, S.T.: Edge detection in ultrasound imagery using the instantaneous coefficient of variation. IEEE Trans. Image Process. 13(2), 1640–1655 (2004)CrossRefGoogle Scholar
  6. 6.
    Al-Kofahi, Y., Lassoued, W., Lee, W., Roysam, B.: Improved Automatic Detection and Segmentation of Cell Nuclei in Histopathology Images. IEEE Trans. Biomed. Eng. 57(4), 841–852 (2010)CrossRefGoogle Scholar
  7. 7.
    Brummer, M.E.: Hough transform detection of the longitudinal fissure in tomographic head images. IEEE Trans. Med. Imag. 10(1), 74–81 (1991)CrossRefGoogle Scholar
  8. 8.
    Chen, X., Hui, L., WenMing, C., JiQiang, F.: Multispectral image edge detection via Clifford gradient. Science China Information Sciences 55, 260–269 (2012)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Shichun, P., Jian, L., Guoping, Y.: Medical Image Edge Detection Based on EMD Method. Wuhan University Journal of Natural Sciences 11, 1287–1291 (2006)CrossRefGoogle Scholar
  10. 10.
    Han, X.-H., Chen, Y.-W.: A robust method based on ICA and mixture sparsity for edge detection in medical images. Signal, Image and Video Processing 5, 39–47 (2011)CrossRefGoogle Scholar
  11. 11.
    Gudmundsson, M., El-Kwae, E.A., Kabuka, M.R.: Edge Detection in Medical Images Using a Genetic Algorithm. IEEE Transactions on Medical Image 13, 469–474 (1998)CrossRefGoogle Scholar
  12. 12.
    Lee, J., Kang, H.: Flood fill mean shift: A robust segmentation algorithm. International Journal of Control, Automation and Systems 8(6), 1313–1319 (2010)CrossRefGoogle Scholar
  13. 13.
    Hsieh, S.-L., Hsiao, Y.-J., Huang, Y.-R.: Using margin information to detect regions of interest in images. In: IEEE Int. Conf. Systems, Man, & Cybernetics, pp. 3392–3396 (2011)Google Scholar
  14. 14.
    Kimori, Y.: Mathematical morphology-based approach to the enhancement of morphological features in medical images. J. Clin. Bioinformatics 1, 1–10 (2011)CrossRefGoogle Scholar
  15. 15.
    Guo, H., Ono, N., Sagayama, S.: A structure-synthesis image inpainting algorithm based on morphological erosion operation. In: Congress Image & Signal Processing, pp. 530–535 (2008)Google Scholar
  16. 16.
    Canny, J.: A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Interll. PAMI-8, 679–698 (1986)Google Scholar
  17. 17.
    Zhang, X., Guo, Y., Du, P.: The Contour Detection and Extraction for Medical Images of Knee Joint. In: Int. Conf. Bioinformatics & Biomedical Eng., pp. 1–4 (2011)Google Scholar
  18. 18.
    Ritter, G., Schreib, G.: Profile and feature extraction from chromosomes. In: Proceedings of the 15th International Conference on Pattern Recognition, pp. 287–290 (2000)Google Scholar
  19. 19.
    Yang, J., Yang, J., Zhang, D.: Median Fisher Discriminator: a robust feature extraction method with applications to biometrics. Frontiers of Computer Science 2, 295–305 (2008)CrossRefGoogle Scholar
  20. 20.
    Ding, S., Mannan, M.A., Poo, A.N.: Oriented bounding box and octree based global interference detection in 5-axis machining of free-form surfaces. Computer-Aided Design 27, 1281–1294 (2004)CrossRefGoogle Scholar
  21. 21.
    Karvelis, P.S., Tzallas, A., Fotiadis, D.I., Georgiou, I.: A Multichannel Watershed-Based Segmentation Method for Multispectral Chromosome Classification. IEEE Trans. Med. Imag. 27(5), 697–708 (2008)CrossRefGoogle Scholar
  22. 22.
    Karvelis, P.S., Fotiadis, D.I., Syrrou, M., Georgiou, I.: Segmentation of Chromosome Images Based on A Recursive Watershed Transform. In: The 3rd European Medical and Biological Engineering Conference, pp. 20–25 (November 2005)Google Scholar
  23. 23.
    Karvelis, P.S., Fotiadis, D.I., Tsalikakis, D.G., Georgiou, I.A.: Enhancement of Multichannel Chromosome Classification Using a Region-Based Classifier and Vector Median Filtering. IEEE Transactions on Information Technology in Biomedicine 13(4), 561–570 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer Science, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand

Personalised recommendations