Advertisement

StudyAdvisor: A Context-Aware Recommendation Application in e-Learning Environment

  • Phung Do
  • Hiep Le
  • Vu Thanh Nguyen
  • Tran Nam Dung
Part of the Studies in Computational Intelligence book series (SCI, volume 551)

Abstract

The explosion of world-wide-web has offered people a large number of online courses, e-classes and e-schools. Such e-learning applications contain a wide variety of learning materials which can confuse the choices of learner to select. In order to address this problem, in this paper we introduce an e-learning application named StudyAdvisor which integrates a context-aware recommender system to suggest suitable learning materials for learners. Particularly, StudyAdvisor provides lessons and exercises or questions related to Fundamental of Database domain. After learners do exercises and take examinations, we then use the study result of learners to determine the learning levels (context) and base on this information to give suggestions by using a context-aware recommendation technique named STI. As a result, lessons to preview and exercises to practice are recommended for learners.

Keywords

e-learning context recommender systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook, 1st edn. Springer-Verlag New York, Inc., New York (2010)Google Scholar
  2. 2.
    Dey, A.K.: Understanding and Using Context. Personal Ubiquitous Comput. 5(1), 4–7 (2001)CrossRefGoogle Scholar
  3. 3.
    Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys 2008, pp. 335–336. ACM, New York (2008)CrossRefGoogle Scholar
  4. 4.
    Su, X., Khoshgoftaar, T.M.: Collaborative Filtering for Multi-class Data Using Belief Nets Algorithms. In: Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2006, pp. 497–504. IEEE Computer Society, Washington, DC (2006)Google Scholar
  5. 5.
    Panniello, U., Gorgoglione, M.: Incorporating context into recommender systems: an empirical comparison of context-based approaches. Electronic Commerce Research 12(1), 1–30 (2012)CrossRefGoogle Scholar
  6. 6.
    Baltrunas, L., Kaminskas, M., Ludwig, B., Moling, O., Ricci, F., Aydin, A., Lüke, K.-H., Schwaiger, R.: InCarMusic: Context-Aware Music Recommendations in a Car. In: Huemer, C., Setzer, T. (eds.) EC-Web 2011. LNBIP, vol. 85, pp. 89–100. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Baltrunas, L., Ludwig, B., Peer, S., Ricci, F.: Context relevance assessment and exploitation in mobile recommender systems. Personal Ubiquitous Comput. 16(5), 507–526 (2012)CrossRefGoogle Scholar
  8. 8.
    Odić, A., Tkalčič, M., Tasič, J.F., Košir, A.: Relevant Context in a Movie Recommender System: Users Opinion vs. Statistical Detection. In: Adomavicius, G. (ed.) Proceedings of the 4th Workshop on Context-Aware Recommender Systems in Conjunction with the 6th ACM Conference on Recommender Systems (RecSys 2012), vol. 889 (2012)Google Scholar
  9. 9.
    Ono, C., Takishima, Y., Motomura, Y., Asoh, H.: Context-Aware Preference Model Based on a Study of Difference between Real and Supposed Situation Data. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 102–113. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Soonthornphisaj, N., Rojsattarat, E., Yim-Ngam, S.: Smart e-learning using recommender system. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) ICIC 2006. LNCS (LNAI), vol. 4114, pp. 518–523. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Thai-Nghe, N., Drumond, L., Krohn-Grimberghe, A., Schmidt-Thieme, L.: Recommender system for predicting student performance. Procedia Computer Science 1(2), 2811–2819 (2010)CrossRefGoogle Scholar
  12. 12.
    Tan, H., Guo, J., Li, Y.: E-learning Recommendation System. In: Proceedings of the 2008 International Conference on Computer Science and Software Engineering, CSSE 2008, vol. 5, pp. 430–433. IEEE Computer Society, Washington, DC (2008)CrossRefGoogle Scholar
  13. 13.
    Tang, T., McCalla, G.I.: Evaluating a Smart Recommender for an Evolving E-learning System: A Simulation-Based Study. In: Tawfik, A.Y., Goodwin, S.D. (eds.) Canadian AI 2004. LNCS (LNAI), vol. 3060, pp. 439–443. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Bobadilla, J., Serradilla, F., Hernando, A.: Collaborative filtering adapted to recommender systems of e-learning. Know.-Based Syst. 22(4), 261–265 (2009)CrossRefGoogle Scholar
  15. 15.
    Wang, S.L., Wu, C.Y.: Application of context-aware and personalized recommendation to implement an adaptive ubiquitous learning system. Expert Syst. Appl. 38(9), 10831–10838 (2011)CrossRefGoogle Scholar
  16. 16.
    Klašnja-Milićević, A., Vesin, B., Ivanović, M., Budimac, Z.: E-Learning personalization based on hybrid recommendation strategy and learning style identification. Computers & Education 56(3), 885–899 (2011)CrossRefGoogle Scholar
  17. 17.
    Salehi, M., Kmalabadi, I.N.: A Hybrid Attribute-based Recommender System for E-learning Material Recommendation. IERI Procedia 2, 565–570 (2012)CrossRefGoogle Scholar
  18. 18.
    Salehi, M., Kmalabadi, I.N., Ghoushchi, M.B.G.: A New Recommendation Approach Based on Implicit Attributes of Learning Material. IERI Procedia 2, 571–576 (2012)CrossRefGoogle Scholar
  19. 19.
    Schmidt, A., Winterhalter, C.: User context aware delivery of e-learning material: Approach and architecture. Journal of Universal Computer Science (JUCS) 10, 28–36 (2004)Google Scholar
  20. 20.
    Do, P., Le, H., Nguyen, V.T., Dung, T.N.: A Context-Aware Collaborative Filtering Algorithm through Identifying Similar Preference Trends in Different Contextual Information. In: S. Obaidat, M. (ed.) Advanced in Computer Science and Its Applications. LNEE, vol. 279, pp. 339–344. Springer, Heidelberg (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Phung Do
    • 1
  • Hiep Le
    • 2
  • Vu Thanh Nguyen
    • 1
  • Tran Nam Dung
    • 3
  1. 1.University of Information TechnologyVietnam National University HoChiMinh CityHoChiMinh CityVietnam
  2. 2.John von Neumann InstituteVietnam National University HoChiMinh CityHoChiMinh CityVietnam
  3. 3.University of ScienceVietnam National University HoChiMinh CityHoChiMinh CityVietnam

Personalised recommendations