Open Access Semantic Aware Business Intelligence

  • Oscar Romero
  • Alberto Abelló
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 172)


The vision of an interconnected and open Web of data is, still, a chimera far from being accomplished. Fortunately, though, one can find several evidences in this direction and despite the technical challenges behind such approach recent advances have shown its feasibility. Semantic-aware formalisms (such as RDF and ontology languages) have been successfully put in practice in approaches such as Linked Data, whereas movements like Open Data have stressed the need of a new open access paradigm to guarantee free access to Web data.

In front of such promising scenario, traditional business intelligence (BI) techniques and methods have been shown not to be appropriate. BI was born to support decision making within the organizations and the data warehouse, the most popular IT construct to support BI, has been typically nurtured with data either owned or accessible within the organization. With the new linked open data paradigm BI systems must meet new requirements such as providing on-demand analysis tasks over any relevant (either internal or external) data source in right-time. In this paper we discuss the technical challenges behind such requirements, which we refer to as exploratory BI, and envision a new kind of BI system to support this scenario.


Semantic web Business intelligence Data warehousing ETL Multidimensional modeling Exploratory business intelligence Data modeling Data provisioning 


  1. 1.
    Lenzerini, M.: Data integration: a theoretical perspective. In: Popa, L., Abiteboul, S., Kolaitis, P.G., (eds.) PODS, pp. 233–246. ACM (2002).Google Scholar
  2. 2.
    Bukhres, O.A., Elmagarmid, A.K. (eds.): Object-Oriented Multidatabase Systems: A Solution for Advanced Applications. Prentice-Hall, Engle- wood Cliffs (1996)Google Scholar
  3. 3.
    Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 3rd edn. Springer, New York (2011)Google Scholar
  4. 4.
    Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intell. Syst. 21(3), 96–101 (2006)CrossRefGoogle Scholar
  5. 5.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semant. Web Inf. Syst. 5(3), 1–22 (2009)CrossRefGoogle Scholar
  6. 6.
    Eberius, J., Thiele, M., Braunschweig, K., Lehner, W.: Drillbeyond: enabling business analysts to explore the web of open data. PVLDB 5(12), 1978–1981 (2012)Google Scholar
  7. 7.
    Golfarelli, M., Rizzi, S.: Data Warehouse Design: Modern Principles and Methodologies, 1st edn. McGraw-Hill, New York (2009)Google Scholar
  8. 8.
    Kimball, R., Reeves, L., Thornthwaite, W., Ross, M.: The Data Warehouse Lifecycle Toolkit: Expert Methods for Designing. Developing and Deploying Data Warehouses. Wiley, New York (1998)Google Scholar
  9. 9.
    Giorgini, P., Rizzi, S., Garzetti, M.: Grand: a goal-oriented approach to requirement analysis in data warehouses. Decis. Support Syst. 45(1), 4–21 (2008)CrossRefGoogle Scholar
  10. 10.
    Mazon, J.N., Trujillo, J., Lechtenborger, J.: Reconciling requirement-driven data warehouses with data sources via multidimensional normal forms. Data Knowl. Eng. 23(3), 725–751 (2007)CrossRefGoogle Scholar
  11. 11.
    Jensen, C.S., Pedersen, T.B., Thomsen, C.: Multidimensional Databases and Data Warehousing. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, San Rafeal (2010)Google Scholar
  12. 12.
    Winter, R., Strauch, B.: A method for demand-driven information requirements analysis in DW projects. In: Proceedings of 36th Annual Hawaii International Conference on System Sciences, pp. 231–239. IEEE (2003).Google Scholar
  13. 13.
    Golfarelli, M., Rizzi, S., Turricchia, E.: Modern software engineering methodologies meet data warehouse design: 4WD. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2011. LNCS, vol. 6862, pp. 66–79. Springer, Heidelberg (2011)Google Scholar
  14. 14.
    Wrembel, R.: A survey of managing the evolution of data warehouses. IJDWM 5(2), 24–56 (2009)Google Scholar
  15. 15.
    Castellanos, M., Dayal, U., Hsu, M.: Live business intelligence for the real-time enterprise. In: Sachs, K., Petrov, I., Guerrero, P. (eds.) From Active Data Management to Event-Based Systems and More. LNCS, vol. 6462, pp. 325–336. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Essaidi, M.: ODBIS: towards a platform for on-demand business intelligence services. In: Proceedings of the ACM International Conference on EDBT/ICDT Workshops. ACM (2010).Google Scholar
  17. 17.
    Berthold, H., Rösch, P., Zöller, S., Wortmann, F., Carenini, A., Campbell, S., Bisson, P., Strohmaier, F.: An architecture for ad-hoc and collaborative business intelligence. In: EDBT/ICDT Workshops (2010).Google Scholar
  18. 18.
    Mazón, J.N., Zubcoff, J.J., Garrigós, I., Espinosa, R., Rodríguez, R.: Open business intelligence: on the importance of data quality awareness in user-friendly data mining. In: EDBT/ICDT Workshops, pp. 144–147. ACM (2012).Google Scholar
  19. 19.
    Löser, A., Hueske, F., Markl, V.: Situational business intelligence. In: Castellanos, M., Dayal, U., Sellis, T. (eds.) Business Intelligence for the Real-Time Enterprise. Lecture Notes in Business Information Processing, vol. 27, pp. 1–11. Springer, Berlin Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Abelló, A., Darmont, J., Etcheverry, L., Golfarelli, M., Mazón, J.N., Naumann, F., Pedersen, T.B., Rizzi, S., Trujillo, J., Vassiliadis, P., Vossen, G.: Fusion cubes: towards self-service business intelligence. Int. J. Data Warehouse. Min. 9(2), 66–88 (2013)CrossRefGoogle Scholar
  21. 21.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, New York (2003)Google Scholar
  22. 22.
    Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog (and never dared to ask). IEEE Trans. Knowl. Data Eng. 1(1), 146–166 (1989)CrossRefGoogle Scholar
  23. 23.
    Patel-Schneider, P.F., Horrocks, I.: Position paper: a comparison of two modelling paradigms in the semantic web. In: 15th International Conference on World Wide Web (WWW), pp. 3–12. ACM (2006).Google Scholar
  24. 24.
    Calì, A., Gottlob, G., Lukasiewicz, T.: Datalog\(^{\pm }\): a unified approach to ontologies and integrity constraints. In: Fagin, R. (ed.) ICDT. ACM International Conference Proceeding Series, vol. 361, pp. 14–30. ACM, New York (2009)CrossRefGoogle Scholar
  25. 25.
    Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-lite family and relations. J. Artif. Intell. Res. 36, 1–69 (2009)Google Scholar
  26. 26.
    Romero, O., Marcel, P., Abelló, A., Peralta, V., Bellatreche, L.: Describing analytical sessions using a multidimensional algebra. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2011. LNCS, vol. 6862, pp. 224–239. Springer, Heidelberg (2011)Google Scholar
  27. 27.
    El Akkaoui, Z., Mazón, J.-N., Vaisman, A., Zimányi, E.: BPMN-based conceptual modeling of ETL processes. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012. LNCS, vol. 7448, pp. 1–14. Springer, Heidelberg (2012)Google Scholar
  28. 28.
    Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete Book. Pearson Prentice Hall, Upper Saddle River (2008)Google Scholar
  29. 29.
    TPC: TPC-H specification (2012).
  30. 30.
    Romero, O., Abelló, A.: A framework for multidimensional design of data warehouses from ontologies. Data Knowl. Eng. 69(11), 1138–1157 (2010)CrossRefGoogle Scholar
  31. 31.
    Romero, O., Simitsis, A., Abelló, A.: GEM: requirement-driven generation of ETL and multidimensional conceptual designs. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2011. LNCS, vol. 6862, pp. 80–95. Springer, Heidelberg (2011)Google Scholar
  32. 32.
    Mazón, J., Lechtenbörger, J., Trujillo, J.: A survey on summarizability issues in multidimensional modeling. In: DKE, pp. 1452–1469 (2009).Google Scholar
  33. 33.
    Lenz, H., Shoshani, A.: Summarizabilty in OLAP and Statistical Data Bases. In: SSDBM, pp. 132–143 (1997)Google Scholar
  34. 34.
    Jovanovic, P., Romero, O., Simitsis, A., Abelló, A.: ORE: an iterative approach to the design and evolution of multi-dimensional schemas. In: Song, I.Y., Golfarelli, M., (eds.) DOLAP, pp. 1–8. ACM (2012).Google Scholar
  35. 35.
    Jovanovic, P., Romero, O., Simitsis, A., Abelló, A.: Integrating ETL processes from information requirements. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012. LNCS, vol. 7448, pp. 65–80. Springer, Heidelberg (2012)Google Scholar
  36. 36.
    Pérez, J.M., Llavori, R.B., Aramburu, M.J., Pedersen, T.B.: Integrating data warehouses with web data: a survey. IEEE Trans. Knowl. Data Eng. 20(7), 940–955 (2008)CrossRefGoogle Scholar
  37. 37.
    Nebot, V., Llavori, R.B.: Building data warehouses with semantic web data. Decis. Support Syst. 52(4), 853–868 (2012)CrossRefGoogle Scholar
  38. 38.
    Spaccapietra, S. (ed.): Journal on Data Semantics XII. LNCS, vol. 5480. Springer, Heidelberg (2009)Google Scholar
  39. 39.
    Gallinucci, E., Golfarelli, M., Rizzi, S.: Meta-stars: multidimensional modeling for social business intelligence. In: Proceedings of DOLAP 2013, pp. 11–18. ACM (2013).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Universitat Politècnica de Catalunya, BarcelonaTechBarcelonaSpain

Personalised recommendations