Skip to main content

A Hybrid Finite Difference-WENO Scheme for Large Eddy Simulation of Compressible Flows

  • Conference paper
  • First Online:
High Order Nonlinear Numerical Schemes for Evolutionary PDEs

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 99))

  • 902 Accesses

Abstract

For a wide range of applications, a better understanding of the physical mechanisms involved during the development of hydrodynamic instabilities at interfaces separating two gases is desired. We are interested in flows that contain both turbulence and shock waves, and that are characterized by a high Reynolds number. Current computational power does not allow direct numerical simulation of these flows and then only a large eddy simulation (LES) is possible. This work aims at developing a numerical scheme for compressible LES. Turbulence is better simulated when the numerical method is not dissipative and a high-order of accuracy is recommended for under-resolved simulations. However, the presence of shocks implies the use of a shock-capturing type scheme to stabilize the solution, with the risk of (eventually) overwhelming the small scales of the solution. A compromise can be obtained by coupling a high-order central finite difference scheme for turbulent regions with a WENO scheme for discontinuous ones. To reduce instabilities in non-dissipative LES of turbulent flows, the convective operators are expressed using a skew-symmetric like form. The semi-discretized problem in space should be carefully constructed to ensure the local preservation of kinetic energy by convection. By considering a symmetric stencils collection for the WENO flux reconstruction, the final hybrid flux can be expressed as the sum of the non-dissipative term and a dissipative one. The solution smoothness is estimated component-wise during the WENO reconstruction in the local characteristic space, to avoid the use of excessive numerical dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted essentially non oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Darian, H.M., Esfahanian, V., Hejranfar, K.: A shock-detecting sensor for filtering of high-order compact finite difference schemes. J. Comput. Phys. 230, 494–514 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C., Poinsot, T.: Large eddy simulation of the Shock-Turbulence interaction. J. Comput. Phys. 152, 517–549 (1999)

    Article  MATH  Google Scholar 

  4. Ducros, F., Laporte, F., Soulères, T., Guinot, V., Moinat, P., Caruelle, B.: High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: application to compressible flows. J. Comput. Phys. 161, 114–139 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hill, D.J., Pullin, D.I.: Hybrid tuned center-difference-WENO method for larfe eddy simulations in the presence of strong shocks. J. Comput. Phys. 194, 435–450 (2004)

    Article  MATH  Google Scholar 

  6. Hill, D.J., Pantano, C., Pullin, D.I.: Larde-eddy simulation and multiscale modeling of a Richtmyer-Meshkov instability with reshock. J. Fluid Mech. 557, 29–61 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Honein, A., Moin, P.: Higher entropy conservation and numerical stability of compressible turbulence simulations. J. Comput. Phys. 201, 531–545 (2004)

    Article  MATH  Google Scholar 

  8. Hu, X.Y., Wang, Q., Adams, N.A.: An adaptive central-upwind weighted essentially non-oscillatory scheme. J. Comput. Phys. 229, 8952–8965 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jiang, G.S., Shu, C.-W.: Efficient implementation of the weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Johnsen, E., Larsson, J., Bhagatwala, A.V., Cabot, W.H., Moin, P., Olson, B.J., Rawat, P.S., Shankar, S.K., Sjogreen, B., Yee, H.C., Zhong, X., Lele, S.K.: Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. J. Comput. Phys. 229, 1213–1237 (2009)

    Article  MathSciNet  Google Scholar 

  11. Kennedy, C.A., Gruber, A.: Reduced aliasing formulations of the convective terms within the Navier–Stokes equations for a compressible fluid. J. Comput. Phys. 227, 1676–1700 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kok, J.C.: A high-order low-dispersion symmetry-presering finite-volume method for compressible flow on curvilinear grids. J. Comput. Phys. 18, 6811–6832 (2009)

    Article  MathSciNet  Google Scholar 

  13. Kravchenko, A.G., Moin, P.: On the effect of numerical errors in large eddy simulations of turbulent flows. J. Comput. Phys. 131, 310–322 (1997)

    Article  MATH  Google Scholar 

  14. Lee, S., Lele, S.K., Moin, P.: Eddy shocklets in decaying compressible turbulence. Phys. Fluids A 3, 657 (1991)

    Article  Google Scholar 

  15. Li, G., Qiu, J.: Hybrid weighted essentially non-oscillatory schemes with different indicators. J. Comput. Phys. 229, 8105–8129 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Martín, M.P., Taylor, E.M., Wu, M., Weirs, V.G.: A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. J. Comput. Phys. 220, 270–289 (2006)

    Article  MATH  Google Scholar 

  17. Morinishi, Y.: Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-mach number flows. J. Comput. Phys. 229, 276–300 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pirozzoli, S.: Generalized conservative approximations of split convective derivative operators. J. Comput. Phys. 229, 7180–7190 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tam, C.K.W., Webb, J.C.: Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107, 262–281 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Taylor, E.M., Wu, M., Martín, M.P.: Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence. J. Comput. Phys. 223, 223 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Burbeau-Augoula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Burbeau-Augoula, A. (2014). A Hybrid Finite Difference-WENO Scheme for Large Eddy Simulation of Compressible Flows. In: Abgrall, R., Beaugendre, H., Congedo, P., Dobrzynski, C., Perrier, V., Ricchiuto, M. (eds) High Order Nonlinear Numerical Schemes for Evolutionary PDEs. Lecture Notes in Computational Science and Engineering, vol 99. Springer, Cham. https://doi.org/10.1007/978-3-319-05455-1_2

Download citation

Publish with us

Policies and ethics