Abstract
In Boscarino et al. (SIAM J Sci Comput, 6(2), A377–A395, preprint: arxiv.org/pdf/1210.4761) the authors propose an asymptotic–preserving method based on Implicit-Explicit (IMEX) Runge-Kutta (R-K) schemes which are adopted to deal with a class of nonlinear hyperbolic systems containing nonlinear diffusive relaxation. These schemes are able to solve such systems with no stiff nor parabolic restriction on the time step. In the limit when the relaxation parameter vanishes, the proposed scheme relaxes to a semi-implicit scheme for the limit nonlinear diffusion equation, thus overcoming the classical parabolic CFL condition in the time step. In this paper we consider an extension of the numerical treatment of the Kawashima-LeFloch’s model (LeFloch and Kawashima, private communication) proposed in Boscarino et al. (SIAM J Sci Comput, 6(2), A377–A395, preprint: arxiv.org/pdf/1210.4761). We show that the same schemes introduced in Boscarino et al. (SIAM J Sci Comput, 6(2), A377–A395, preprint: arxiv.org/pdf/1210.4761) relaxes to an semi-implicit scheme for the limit nonlinear convection-diffusion equation. A numerical example confirms the robustness and the accuracy of the scheme in order to capture the correct behavior of the solution in the hyperbolic–to–parabolic regime.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ascher, U., Ruuth, S., Spitheri, R.J.: Implicit-explicit Runge-Kutta methods for time dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)
Berthon, C., LeFloch, P.G., Turpault, R.: Late-time relaxation limits of nonlinear hyperbolic systems. A general framework. Math. Comput. (2012). See also ArXiv:1011.3366
Boscarino, S.: Error analysis of IMEX Runge–Kutta methods derived from differential algebraic systems. SIAM J. Numer. Anal. 45, 1600–1621 (2007)
Boscarino, S.: On an accurate third order implicit-explicit Runge-Kutta method for stiff problems. Appl. Numer. Math. 59, 1515–1528 (2009)
Boscarino, S.: Implicit-explicit Runge-Kutta schemes for hyperbolic systems in the diffusion limit. In: ICNAAM 2011, Halkidiki. AIP Conference Proceedings, vol. 1389, pp. 1315–1318 (2011)
Boscarino, S., Russo, G.: On a class of uniformly accurate IMEX Runge-Kutta schemes and applications to hyperbolic systems with relaxation. SIAM J. Sci. Comput. 31(3), 1926–1945 (2009)
Boscarino, S., Russo, G.: Flux-explicit ImEx Runge-Rutta schemes for hyperbolic to parabolic relaxation problems. SIAM J. Numer. Anal. 51(1), 163–190 (2013)
Boscarino, S., Russo G.: IMEX Runge-Kutta schemes for hyperbolic systems with diffusive relaxation. In: CD-ROM Proceedings ECCOMAS 2012, Vienna. Vienna University of Technology (2013). ISBN:978-3-9502481-9
Boscarino, S., LeFloch, P.G., Russo, G.: High-order asymptotic–preserving methods for fully nonlinear relaxation problems. SIAM J. on Sci. Comput 6(2), A377–A395. Preprint: arxiv.org/pdf/1210.4761
Boscarino, S., Pareschi, L., Russo, G.: IMEX Runge-Kutta schemes and hyperbolic systems of conservation laws with stiff diffusive relaxation, ICNAAM 2009, AIP Conference Proceedings 1168,1106–1111 (2009)
Boscarino, S., Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 35(1), A22–A51 (2013)
Carpenter, M.H., Kennedy, C.A.: Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44(1–2), 139–181 (2003)
Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equation I. Non-stiff Problems. Springer Series in Computational Mathematics, vol. 8, 2nd edn. Springer, Berlin/New York (1993)
Jin, S., Pareschi, L.: Discretization of the multiscale semiconductor Boltzmann equation by diffusive relaxation schemes. J. Comput. Phys. 161, 312–330 (2000)
Jin, S., Pareschi, L., Toscani, G.: Diffusive relaxation schemes for multiscale discrete–velocity kinetic equations. SIAM J. Numer. Anal. 35, 2405–2439 (1998)
Klar, A.: An asymptotic-induced scheme for non stationary transport equations in the diffusive limit. SIAM J. Numer. Anal. 35, 1073–1094 (1998)
Lafitte, P., Samaey, G.: Asymptotic–preserving projective integration schemes for kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 34(2), A579–A602 (2010)
Lemou, M., Mieussens, L.: A new asymptotic preserving scheme based on micro–macro formulation for linear kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 31, 334–368 (2010)
Marche, F.: Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. Eur. J. Mech./B-Fluid 26, 49–63 (2007)
Naldi, G., Pareschi, L.: Numerical schemes for hyperbolic systems of conservation laws with stiff diffusive relaxation. SIAM J. Numer. Anal. 37(4), 1246–1270 (2000)
Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxations. J. Sci. Comput. 25(1), 129–155 (2005)
Shu, C.W.: Essentially non oscillatory and weighted essentially non oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin/Heidelberg (1998). Series ISSN: 0075-8434
Zong X.: Additive semi-implicit Runge-Kutta methods for computing high-speed non equilibrium reactive flows. J. Comput. Phys. 128, 19–31 (1996)
Acknowledgements
This work has been partially supported by the Italian Project PRIN 2009 “Innovative numerical methods for hyperbolic problems with applications to fluid dynamics, kinetic theory and computational biology”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Boscarino, S., Russo, G. (2014). High–Order Asymptotic–Preserving Methods for Nonlinear Relaxation from Hyperbolic Systems to Convection–Diffusion Equations. In: Abgrall, R., Beaugendre, H., Congedo, P., Dobrzynski, C., Perrier, V., Ricchiuto, M. (eds) High Order Nonlinear Numerical Schemes for Evolutionary PDEs. Lecture Notes in Computational Science and Engineering, vol 99. Springer, Cham. https://doi.org/10.1007/978-3-319-05455-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-05455-1_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05454-4
Online ISBN: 978-3-319-05455-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)