Skip to main content

High–Order Asymptotic–Preserving Methods for Nonlinear Relaxation from Hyperbolic Systems to Convection–Diffusion Equations

  • Conference paper
  • First Online:
High Order Nonlinear Numerical Schemes for Evolutionary PDEs

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 99))

Abstract

In Boscarino et al. (SIAM J Sci Comput, 6(2), A377–A395, preprint: arxiv.org/pdf/1210.4761) the authors propose an asymptotic–preserving method based on Implicit-Explicit (IMEX) Runge-Kutta (R-K) schemes which are adopted to deal with a class of nonlinear hyperbolic systems containing nonlinear diffusive relaxation. These schemes are able to solve such systems with no stiff nor parabolic restriction on the time step. In the limit when the relaxation parameter vanishes, the proposed scheme relaxes to a semi-implicit scheme for the limit nonlinear diffusion equation, thus overcoming the classical parabolic CFL condition in the time step. In this paper we consider an extension of the numerical treatment of the Kawashima-LeFloch’s model (LeFloch and Kawashima, private communication) proposed in Boscarino et al. (SIAM J Sci Comput, 6(2), A377–A395, preprint: arxiv.org/pdf/1210.4761). We show that the same schemes introduced in Boscarino et al. (SIAM J Sci Comput, 6(2), A377–A395, preprint: arxiv.org/pdf/1210.4761) relaxes to an semi-implicit scheme for the limit nonlinear convection-diffusion equation. A numerical example confirms the robustness and the accuracy of the scheme in order to capture the correct behavior of the solution in the hyperbolic–to–parabolic regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ascher, U., Ruuth, S., Spitheri, R.J.: Implicit-explicit Runge-Kutta methods for time dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berthon, C., LeFloch, P.G., Turpault, R.: Late-time relaxation limits of nonlinear hyperbolic systems. A general framework. Math. Comput. (2012). See also ArXiv:1011.3366

    Google Scholar 

  3. Boscarino, S.: Error analysis of IMEX Runge–Kutta methods derived from differential algebraic systems. SIAM J. Numer. Anal. 45, 1600–1621 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boscarino, S.: On an accurate third order implicit-explicit Runge-Kutta method for stiff problems. Appl. Numer. Math. 59, 1515–1528 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boscarino, S.: Implicit-explicit Runge-Kutta schemes for hyperbolic systems in the diffusion limit. In: ICNAAM 2011, Halkidiki. AIP Conference Proceedings, vol. 1389, pp. 1315–1318 (2011)

    Article  Google Scholar 

  6. Boscarino, S., Russo, G.: On a class of uniformly accurate IMEX Runge-Kutta schemes and applications to hyperbolic systems with relaxation. SIAM J. Sci. Comput. 31(3), 1926–1945 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boscarino, S., Russo, G.: Flux-explicit ImEx Runge-Rutta schemes for hyperbolic to parabolic relaxation problems. SIAM J. Numer. Anal. 51(1), 163–190 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Boscarino, S., Russo G.: IMEX Runge-Kutta schemes for hyperbolic systems with diffusive relaxation. In: CD-ROM Proceedings ECCOMAS 2012, Vienna. Vienna University of Technology (2013). ISBN:978-3-9502481-9

    Google Scholar 

  9. Boscarino, S., LeFloch, P.G., Russo, G.: High-order asymptotic–preserving methods for fully nonlinear relaxation problems. SIAM J. on Sci. Comput 6(2), A377–A395. Preprint: arxiv.org/pdf/1210.4761

  10. Boscarino, S., Pareschi, L., Russo, G.: IMEX Runge-Kutta schemes and hyperbolic systems of conservation laws with stiff diffusive relaxation, ICNAAM 2009, AIP Conference Proceedings 1168,1106–1111 (2009)

    Article  Google Scholar 

  11. Boscarino, S., Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 35(1), A22–A51 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Carpenter, M.H., Kennedy, C.A.: Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44(1–2), 139–181 (2003)

    MATH  MathSciNet  Google Scholar 

  13. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equation I. Non-stiff Problems. Springer Series in Computational Mathematics, vol. 8, 2nd edn. Springer, Berlin/New York (1993)

    Google Scholar 

  14. Jin, S., Pareschi, L.: Discretization of the multiscale semiconductor Boltzmann equation by diffusive relaxation schemes. J. Comput. Phys. 161, 312–330 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jin, S., Pareschi, L., Toscani, G.: Diffusive relaxation schemes for multiscale discrete–velocity kinetic equations. SIAM J. Numer. Anal. 35, 2405–2439 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Klar, A.: An asymptotic-induced scheme for non stationary transport equations in the diffusive limit. SIAM J. Numer. Anal. 35, 1073–1094 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lafitte, P., Samaey, G.: Asymptotic–preserving projective integration schemes for kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 34(2), A579–A602 (2010)

    Article  MathSciNet  Google Scholar 

  18. Lemou, M., Mieussens, L.: A new asymptotic preserving scheme based on micro–macro formulation for linear kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 31, 334–368 (2010)

    Article  MathSciNet  Google Scholar 

  19. Marche, F.: Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. Eur. J. Mech./B-Fluid 26, 49–63 (2007)

    Google Scholar 

  20. Naldi, G., Pareschi, L.: Numerical schemes for hyperbolic systems of conservation laws with stiff diffusive relaxation. SIAM J. Numer. Anal. 37(4), 1246–1270 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxations. J. Sci. Comput. 25(1), 129–155 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Shu, C.W.: Essentially non oscillatory and weighted essentially non oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin/Heidelberg (1998). Series ISSN: 0075-8434

    Google Scholar 

  23. Zong X.: Additive semi-implicit Runge-Kutta methods for computing high-speed non equilibrium reactive flows. J. Comput. Phys. 128, 19–31 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Italian Project PRIN 2009 “Innovative numerical methods for hyperbolic problems with applications to fluid dynamics, kinetic theory and computational biology”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Russo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Boscarino, S., Russo, G. (2014). High–Order Asymptotic–Preserving Methods for Nonlinear Relaxation from Hyperbolic Systems to Convection–Diffusion Equations. In: Abgrall, R., Beaugendre, H., Congedo, P., Dobrzynski, C., Perrier, V., Ricchiuto, M. (eds) High Order Nonlinear Numerical Schemes for Evolutionary PDEs. Lecture Notes in Computational Science and Engineering, vol 99. Springer, Cham. https://doi.org/10.1007/978-3-319-05455-1_1

Download citation

Publish with us

Policies and ethics